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Abstract—Novel 3D acquisition devices like depth cameras
and the Leap Motion have recently reached the market.
Depth cameras allow to obtain a complete 3D description
of the framed scene while the Leap Motion sensor is a device
explicitly targeted for hand gesture recognition and provides
only a limited set of relevant points. This paper shows how
to jointly exploit the two type of sensors for accurate gesture
recognition. An ad-hoc solution for the joint calibration of the
two devices is firstly presented. Then a set of novel feature
descriptors is introduced both for the Leap Motion and for
depth data. Various schemes based on the distances of the
hand samples from the centroid, on the curvature of the
hand contour and on the convex hull of the hand shape are
employed and the use of Leap Motion data to aid feature
extraction is also considered. The proposed feature sets are
fed to a multi-class SVM classifier and experimental results
show that a very high accuracy can be obtained from the
proposed method. The current implementation is also able to
run in real-time.

Index Terms—Depth, Gesture Recognition, Calibration,
Kinect , Leap Motion, SVM.

I. INTRODUCTION

Automatic hand gesture recognition is a very intriguing
problem that, if efficiently solved, could open the way to
many applications in several different fields, e.g. human-
computer interaction, computer gaming, robotics, automatic
sign-language interpretation. The problem can be solved
both by using wearable devices and with vision-based
approach. Vision-based hand gesture recognition [1] is less
invasive and paves the way for a more natural interaction,
however it is also a very challenging problem.

Until a few years ago all the available approaches were
based on the extraction of the information from images and
videos [2]. These representations contain a 2D description
of the three-dimensional hand pose, making it often difficult
to properly understand the hand pose and consequently the
performed gesture due to the complex 3D movements that
the hand and fingers can do and to the presence of many
inter-occlusions between the various hand parts.

The introduction of Time-Of-Flight cameras and of low
cost consumer depth cameras based on structured light
[3] has made 3D data acquisition available to the mass
market, thus opening the way to a new family of computer
vision methods that exploit 3D information to recognize the
performed gestures. In particular the success of Microsoft’s
KinectTM has shown how natural interfaces based on the
acquisition of 3D data can be efficiently employed in

commercial applications. However, notice how the standard
usage of this device allows to recognize the whole body
gestures but not the small details associated to the pose
of the fingers. In order to exploit the data of the Kinect
and of similar devices for hand gesture recognition, several
methods have been proposed. The basic idea behind most of
them is to extract relevant features from the depth data and
then applying machine-learning techniques to the extracted
features, in Section II an overview of the various available
approaches will be presented.

The Leap Motion device is another recently introduced
sensor based on vision techniques targeted to the extraction
of 3D data, but differently from the Kinect that provides a
3D description of the framed scene, this device is explicitly
targeted to hand gesture recognition and directly computes
the position of the fingertips and the hand orientation. Com-
pared with depth cameras like the Kinect, it produces a far
more limited amount of information (only a few keypoints
instead of the complete depth description) and works on a
smaller 3D region. On the other side the extracted data is
more accurate (according to a recent study [4] its accuracy
is of about 200µm) and it is not necessary to use computer
vision algorithms to extract the relevant points since they
are directly provided by the device. The software provided
with the Leap Motion recognizes a few movement patterns
only, e.g., swipe or tap, and the exploitation of Leap Motion
data for more complex gesture recognition systems is still
an almost unexplored field.

Since the Kinect and the Leap Motion have quite com-
plementary characteristics (e.g., a few accurate and relevant
keypoints against a large number of less accurate 3D
points), it seems reasonable to exploit them together for
gesture recognition purposes. If the information carried out
by the two devices has to be jointly considered, a calibration
of the whole system is needed. This paper, following this
rationale, presents a novel approach for the combined use
of the two devices for hand gesture recognition (Fig. 1
shows a general overview). Firstly ad-hoc approach for
the joint calibration of the two devices is presented. Then
reliable feature extraction schemes from both the Kinect
and the Leap Motion data are introduced. The use of joint
information from the two devices for more reliable and
faster feature extraction will also be considered. Finally,
a reliable classification scheme based on Support Vector
Machines (SVM), suitable both for each of the two devices
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Fig. 1: Pipeline of the proposed approach.

alone and for the joint exploitation of the two sensors,
is proposed. This work has several novel contributions: it
presents the first attempt to detect gestures from the data
acquired by the Leap Motion proposing reliable approaches
for the feature extraction and for the gesture classification
based on these features; it shows how to jointly calibrate
the Leap Motion with depth cameras like the Kinect, a quite
challenging task due to the limited amount of data provided
by the Leap Motion; finally it shows how to jointly exploit
the two devices for gesture recognition.

The paper is organized in the following way: Section II
presents a brief overview of the related works, then Section
III proposes a method for the joint calibration of the 3D
measures from the two devices. Section IV present a novel
set of feature descriptors that can be extracted from the
Leap Motion data. Section V presents the feature extraction
scheme from depth data and shows how to combine depth
and Leap Motion data in order to reduce the computation
time and improve the accuracy of the extracted features.
Then the classifying algorithm is described in Section
VI. Experimental results are presented in Section VII and
finally Section VIII draws the conclusions.

II. RELATED WORKS

Hand gesture recognition from data acquired by the
Kinect or other consumer depth cameras is a novel but
very attractive research field. Many approaches have been
presented, mostly based on the standard scheme of extract-
ing relevant features from the depth data and then applying
machine-learning techniques to the extracted features. In
the approach of [5], silhouette and cell occupancy features
are extracted from the depth data and used to build a shape
descriptor. The descriptor is then used inside a classifier
based on action graphs. Other approaches, e.g., [6] and
[7] are based on volumetric shape descriptors. The two
approaches both exploit a classifier based on Support Vector
Machines (SVM). The histograms of the distance of hand
edge points from the hand center are instead used in the

approaches of [8] and [9]. Another approach based on an
SVM classifier is [10], that employs 4 different types of
features extracted from the depth data.

Other approaches instead estimate the complete 3D hand
pose from depth data. Keskin et Al. [11] try to estimate the
pose by segmenting the hand depth map into its different
parts, with a variation of the machine learning approach
used for full body tracking in [12]. Multi-view setups have
also been used for this task [13], since approaches based
on a single camera are affected by the large amount of oc-
cluded parts, making the pose estimation rather challenging.

Differently from the Kinect, the exploitation of Leap
Motion data for gesture recognition systems is still an
almost unexplored field. A preliminary study on the usage
of this device for sign language recognition has been
presented in [14]. Another gesture interface based on the
Leap Motion has been presented in [15], where the authors
use the device to control a robot arm.

III. CALIBRATION

The employed acquisition setup, shown in Fig.2, consists
of a depth sensor with optionally a color camera rigidly
attached to the depth one (e.g., Time-Of-Flight cameras,
Microsoft Kinect, Creative Senz3D, Asus Xtion PRO and
other similar devices), and a Leap Motion device. Our
implementation for testing the algorithm uses the Kinect
sensor but the general pipeline remains valid also for the
other devices. In particular, our approach does not require
an additional color stream.

Fig. 2: Acquisition setup.

The aim of the calibration procedure is to estimate the
extrinsic parameters of the two devices, i.e., the coordi-
nate system transformation between the two devices, or
equivalently the position of one sensor with respect to
the other one. In addition, the two devices need also to
be independently calibrated in order to correctly locate
points in the 3D space. The Leap Motion software already
provides a calibration tool, while the Kinect requires an
external calibration, e.g., it is possible to use the approach
of [16], in which both the color and the depth map from the
sensor are used to extract intrinsic and extrinsic parameters.
Our gesture recognition scheme requires only to associate
to each point in the scene a depth value, therefore only



the projection matrix of the depth camera will be used.
Given the two sensors independently calibrated, for every
acquisition we get two sets of data describing the scene. The
Leap Motion provides a point cloud with up to 6 points,
one for the palm center and up to 5 for the fingertips. Data
retrieved from the Kinect consist instead in a full frame
depth map with an associated color image (the latter will
not be used in the gesture recognition pipeline).

In order to find the roto-translation between the two
sensors, the standard procedure requires to have the 3D
coordinates of a set of points in the two coordinate systems.
From the description of Leap Motion data (Section IV),
it naturally follows that the only calibration clue that can
be used is the hand itself. We decided to use the open
hand gesture as the calibration tool (i.e., gesture G9 of the
results database, see Fig. 8), this is because the Leap Motion
software is not able to provide a one-to-one map between
fingertips and real fingers, it just gives the positions in a
random fashion; when 5 fingers are detected though we are
quite sure that all the fingertips have been detected and
with a few preprocessing they can be ordered and then
associated to known fingers. The same points then need
to be detected also from the depth camera, therefore a
procedure for extracting the fingertips 3D coordinates will
be presented.

As it is possible to see from Fig. 2, in order to be able to
retrieve useful information from both the sensors, the Leap
Motion has to be put under the performed gesture, while the
depth sensor has been placed a little more forward, facing
the user, as in a regular gesture recognition setup. The
proposed calibration of a Leap Motion and a depth sensor,
allows to easily make the two devices working together,
without the need of external tools like checkerboards or
other classic calibration devices. This is a key requirement
for a human-computer interaction system, indeed, the pro-
posed approach allows to easily set up a gesture recognition
system exploiting the two devices, without the need of
having them rigidly attached to a fixed structure. Whenever
one of the two devices is moved, to calibrate the system
it is sufficient to acquire a couple of frames of the user’s
open hand.

A. Extraction of fingertips position

Starting from the hand orientation and the palm center
estimated from the Leap Motion, the palm plane can be
extracted and the fingertips projected onto this plane. We
decided to use the hand direction as a reference and then
to associate to the thumb the fingertip with the most
negative angle between the principal axis and the pro-
jected fingertip and to the other fingers the other fingertips
by increasing angular values, until the fingertip with the
greatest angular value associated to the pinkie. Section
IV presents a description of the data acquired from the
sensor and in particular provides more details on the angles
computation. After this operation we obtain a set of 5 points

XL = X1
L, ..., X

5
L describing the fingertips in the Leap

Motion coordinate system.
For the depth sensor, instead, a more complex approach

is required to extract fingertips positions from the acquired
depth image. In order for the calibration process to be
completely automatic, we decided to avoid the need to
manually select points, relying instead in an automatic
fingertips extraction algorithm. The idea is to extract the
hand region from the acquired depth stream and then to
process the hand contour to detect fingertips. The extraction
of the hand has been performed using the approach of
[10], while for the hand contour we exploit the distance
feature as explained in Section V. The distance d of each
point X of the hand contour from the palm center is
computed, thus obtaining function d(X). The fingertips are
then assumed to be the points of the fingers at the maximum
distance from the center. Given the function d(X), its
local maxima are the points X̄ where f ′(X̄) = 0 and
f ′′(X̄) < 0. Due to the inaccuracy in the depth image, the
hand contour is usually irregular and need to be smoothed
before searching for the local maxima. In addition, only
the 5 highest maxima are used and a minimum distance
between two candidates is guaranteed in order to avoid
multiple detections on the same finger. Once these points
are detected, the correspondent values in the depth image
are selected and through the projection matrix of the depth
camera they are back-projected in 3D space obtaining
the 3D coordinates of the fingertips in the depth camera
coordinate system XD = X1

D, ..., X
5
D. Figure 3 shows an

example of function d(X), of the detected local maxima
and of the relative fingertips in the depth image. It is worth
notice that the Leap Motion API does not specify which
actual point of the finger shape is returned as the fingertip,
therefore we decided to consider as fingertip the farthest
point of the finger.
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Fig. 3: Hand contour and detected fingertips: a) distance
of each point of the hand contour, the red circles are the
detected local maxima; b) projected local maxima onto the
hand mask of the depth image.

B. Roto-translation estimation

With the two sets of fingertip 3D positions XL from the
Leap Motion and XD from the depth camera, the goal is



to find the best roto-translation R and t that solves the
following registration problem

min ||RXL + t−XD||2F (1)

i.e., to find the best roto-translation that brings the point
cloud XL to the point cloud XD. In order to be more robust
against noise, we acquire a couple of frames, extract the
fingers and than compute the best parameters using a the
RANSAC robust estimation approach. From our tests we
found out that the assumption of considering as fingertip
the extreme point of the finger is quite a valid assumption
and that the mean error obtained from the square root of
(1) for all the tested people is about 9 mm.

IV. FEATURES EXTRACTION FROM THE LEAP MOTION
DATA

As already reported the Leap Motion device provides
only a limited set of relevant points and not a complete
description of the hand shape. From one side the amount
of information is more limited if compared with depth
sensors like the Kinect, but from the other side the device
provide directly some of the most relevant points for gesture
recognition and allows to avoid complex computations
needed for their extraction from depth and color data. The
Leap Motion sensor mainly provides the following data:
• Number of detected fingers N ∈ [0, 5] that the device

is currently seeing.
• Position of the fingertips Fi, i = 1, ..., N . Vectors Fi

containing the 3D positions of each of the detected
fingertips. The sensor however does not provide a
mapping between the vectors Fi and the fingers.

• Palm center C that represent the 3D location roughly
corresponding to the center of the palm region in the
3D space.

• Hand orientation consists on two unit vectors rep-
resenting the hand orientation computed in the palm
center C. The first vector, denoted with h, points
from the palm center to the direction of the fingers,
while the second, denoted with n, is the normal to
the plane that corresponds to the palm region pointing
downward from the palm center.

• Hand radius r is a scalar value corresponding to the
radius of a sphere that roughly fits the curvature of
the hand (it is not too reliable and it is not used in the
proposed approach).

Note that the accuracy is not the same for all the reported
data vectors. The 3D positions of the fingertips are quite
accurate: according to a recent research [4] the error is
about 200 µm. This is a very good accuracy, specially if
compared to the one of depth data acquired by the Kinect
and from other similar devices. While the localization of
the detected fingers is accurate, their detection is not too
reliable. There are some situations in which the sensor is
not able to recognize all the fingers. Fingers folded over the
hand or hidden from the sensor viewpoint are not captured,
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Fig. 4: Data acquired by the Leap Motion device.

furthermore fingers touching each other are sometimes
detected as a single finger. Even in situations where the
fingers are visible and separated from the hand and the other
fingers it can happen that some fingers are lost, specially if
the hand is not perpendicular to the camera. Another typical
issue of this sensor is that protruding objects near the
hand, like bracelets or sleeves edges, can be confused with
fingers. These issues are quite critical and must be taken
into account in developing a reliable gesture recognition
approach since in different executions of the same gesture
the number of captured fingers could vary. For this reason
simple schemes based on the number of detected fingers
have poor performance.

As previously stated then, Leap Motion does not provide
a one-to-one map between fingers and fingertips detected,
in the proposed approach we deal with this issue by sorting
the features on the basis of the fingertip angle with respect
to the hand direction h. In order to account for the fingers
misalignment, we consider the projection of the hand region
into the palm plane described by n and passing through
C, as depicted in Fig. 5. The plane is then divided into
five angular regions Si, i = 1, ..., 5 and each captured
finger is assigned to a specific region according to the angle
between the projection of the finger in the plane and the
hand direction h. Note that a unique matching between
the sectors and the fingers is not guaranteed, i.e., some of
the sectors Si could be associated to more than one finger
and other sectors could be empty. When two fingers lie in
the same angular region, one of the two is assigned to the
nearest adjacent sector if not already occupied, otherwise
the maximum between the two feature values is selected.

In this work we analyze 4 different types of features
computed from the Leap Motion data that will be described
in the rest of this section:

• Fingertip angles: angles corresponding to the orien-
tation of each fingertip projected onto the palm plane
with respect to the hand orientation h.

• Fingertip distances: 3D distance of the fingertips
from the hand center.
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• Fingertip elevations: distances of the fingertip from
the palm region plane.

• Fingertip 3D positions: x, y and z coordinates of the
fingertips.

All the features values (except for the angles) are normal-
ized in the interval [0, 1] by dividing the values for the
distance between the hand center and the middle fingertip
length S = ||Fmiddle−C|| in order to make the approach
robust to people with hands of different size. The scale
factor S can be computed during the calibration of the
system.

A. Fingertip angles

The computation of this feature plays a key role also for
the other features since the angle is used as a metric to
order the fingertips. The fingertip angle is defined as:

Ai = ∠(Fπi −C,h), i = 1, ..., N (2)

where Fπi is the projection of Fi on the plane identified
by n, and corresponds to the orientation of the projected
fingertip with respect to the hand orientation. The estimated
hand orientation h and consequently the fingertips angles
are strongly affected by the number of detected fingers. In
order to be scale independent, the obtained values Ai have
been scaled and the interval have been set to [0.5, 1], to
better discriminate the valid values from the missing ones,
that have been set to 0. These values have also been used
to assign each finger to the corresponding sector. Fingertip
angles features are then collected into vector Fa.

B. Fingertip distances

This feature represent the distance of each fingertip from
the palm center. Distance is defined as:

Di = ||Fi −C||/S, i = 1, ..., N (3)

and they are ordered according to increasing angles. At
most one feature value is associated to each sector and the
missing values has been set to 0. Fingertip distances are
collected into vector Fd.

C. Fingertip elevations

Another descriptor for a fingertip is its the elevation from
the palm plane. Elevation is defined as:

Ei = sgn((Fi − Fπi ) · n)||Fi − Fπi ||/S, i = 1, ..., N (4)

and thanks to the sign operator it describes also to which
of the two semi-spaces, defined by the palm plane, the
fingertip belongs. As for the previous features, there is at
most one feature value for each sector and the missing
values has been set to 0. Note that as for the fingertips
angles, the values range has been scaled to the interval
[0.5, 1] and then collected into vector Fe.

D. Fingertip 3D position

This feature set represents the positions of the fingertips
in the 3D space. As for the previous features, firstly the
fingertips have been ordered according to increasing angles,
then, since a reliable hand gesture recognition system must
be independent from the hand position and orientation
inside the frame, it is necessary to normalize the coordinates
with respect to the hand position and orientation.

P xi = (Fi −C) · (n× h)

P yi = (Fi −C) · h
P zi = (Fi −C) · n

(5)

It is worth noticing that the fingertip 3D positions can
be seen as the compact representation of the combination
of angles, distances and elevation, i.e., of the first three
features. Fingertip 3D positions have been collected into
vector Fp.

V. FEATURES EXTRACTION FROM DEPTH CAMERA DATA

In the proposed approach, gestures are acquired with both
a Leap Motion and a depth camera, we used a Kinect for
testing the algorithm but any other depth camera can be
used for this purpose. Feature extraction from depth data
requires two main steps: firstly the hand is extracted from
the rest of the scene using the acquired depth information,
then, a set of features is computed from the segmented
region.

The first step is quite time-consuming if solved by using
only the depth and color data as we did in our previous
works [10], [17]. In addition, most of the works available in
the literature, dealing with hand extraction, assume that the
hand is the closest object to the camera, an assumption that
is often violated in a typical human-computer interaction
domain, where there can be other objects in the scene closer
to the camera. In the proposed approach the Leap Motion
information is exploited in this first step both to improve
the accuracy and to reduce the computation time. Using
this information, the assumption that the hand is the closest
object can be removed.

In the second step four different kinds of features are
computed from the depth data:



• Curvature features: analyze the hand contour shape
to extract the particular shape.

• Distance features: consider the distance of each point
of the hand contour to describe the hand shape.

• Correlation features: this is a measure of similarity
between distance features.

• Connected components features: exploiting the con-
vex hull compute size and number of connected com-
ponents in the performed gesture.

In the remaining section, firstly we will present our
approach to segment out the hand using Leap Motion
information, then the 4 different features are described.

A. Extraction of the hand from the combined use of depth
and Leap Motion data

In our previous approach [10] the extraction of the hand
from color and depth data was performed with a time-
consuming procedure based on several steps. Firstly the
closest point was localized on the depth data. Then a
multiple thresholding on the depth values, on the distance
from the closest point and on the color values with respect
to the skin color was used to obtain a first estimate of
the hand samples. The hand centroid was estimated in the
subsequent step by finding the maximum of the output of
a Gaussian filter with a large standard deviation applied to
the estimated hand mask (this corresponds to assume that
the densest region belongs to the hand palm). A circle is
then fitted on the hand palm to precisely locate its center
and to divide the hand into palm, wrist and fingers regions.
Finally PCA is exploited to compute the hand orientation.
The details of this approach can be found in [10], however
it is clear that it is a quite complex operation, indeed,
most of the computation time of the entire pipeline of [10]
was spent on this step. Furthermore there are a couple of
critical assumptions, i.e., that the closest point matching
the skin color correspond to the hand and that the palm
is the densest region, that can lead to wrong detections
in particular situations. This typically does not happen in
simple settings with a user is in front of the computer, but
limits the applicability of the approach in more complex
settings scenarios.

Since in the proposed approach the Leap Motion data
is also available and the two devices have been jointly
calibrated using the approach of Section III, it seems
reasonable to exploit the data from this sensor in the
detection step. The hand centroid computed by the Leap
Motion C can be projected to the depth camera coordinate
system obtaining the point CD = RC + t and used as a
starting point for the hand detection. A sphere of radius rh
is then centered on CD and the samples inside the sphere
are selected, i.e:

H = {X : ‖X − CD‖2 ≤ rh} (6)

where X is a generic 3D point acquired by the depth
camera and rh is set on the basis of the physical hand
size (in the tests, rh = 10[cm] has been used). The points

in the set H inside the sphere represent the initial hand
estimate. This allows to remove the assumption that the
hand is the closest point to the sensor. Furthermore, the
thresholding in the color space can be avoided, as well as
the acquisition and processing of color data, making this
step faster and simpler. The centroid located by the Leap
Motion is very reliably located in the hand region but its
localization is not too accurate, due to the uncertainty in the
position estimated from the Leap Motion. For this reason,
its position is optimized with the circle fitting scheme of
[10]. Let us denote with Cpalm the final circle and with R
its radius. A more refined scheme employing an ellipse in
place of the circle can also be used [18].

The hand orientation can also be extracted from the Leap
Motion data (it is given by the vectors h and n as discussed
in Section IV), therefore the computation of the PCA can
also be avoided. Another critical aspect in the approach
of [10] is that with PCA the orientation was quite well
estimated, but the direction was supposed always pointing
upward, with the proposed approach instead this assump-
tion can be removed, relying in the direction estimated by
the Leap Motion.

Finally the hand samples are subdivided into fingers,
palm and wrist regions. Palm samples (P) are the ones
inside Cpalm; the fingers samples set F contains the
samples X outside Cpalm that satisfy (X−CD) · h > R,
i.e., the ones outside the circle in the direction of h; the
remaining samples are associated to the wrist region (W).

B. Distance features

This feature set aims at capturing the profile of the hand
contour in order to extract informative description of the
performed gesture. We start by considering each point X
in the hand contour, extracted from the hand mask in the
depth image, at each point, the distance d(X) with respect
to the hand center Cpalm is computed

d(X) = ||X−Cpalm|| (7)

Given the hand orientation then, we are able to provide
a coherent function d(X) among different gestures and
repetitions, i.e., we can set as starting point X1 the in-
tersection between the hand contour and the hand direction
h, and then proceed clockwise with the other points until
the last one Xn. For each acquisition though, the number
of points in the hand contour n is not fixed, therefore in
order to be consistent, the function d(X) is sampled to get
180 values (this value can be chosen even smaller without
excessively impacting the overall accuracy, but reducing the
computation time). An example of this function is shown
in Fig. 3 a).

The distance function d is then normalized by the length
Lmax of the middle finger in order to scale the values
within the range [0, 1] and to account for different hand
sizes among people. The distance samples are collected into
feature vector Fl. Notice that this descriptor is different



from the distance descriptors used in [10]: the approach
proposed in this work turned out to be simpler, faster and
more accurate.

C. Correlation features
This feature set is based on the similarity between

distance functions of subsection V-B. For each considered
gesture, a reference acquisition is selected and the corre-
sponding distance function is computed with the approach
of Eq. 7, thus obtaining a set of reference function drg(X),
where g is the considered gesture. The distance function
of the acquired gesture d(X) is also computed and the
maximum of the correlation between the current histogram
d(X) and a shifted version of the reference histogram
drg(X) is selected:

Rg = max
∆

[
ρ
(
d(X), drg(X + ∆)

)
, ρ

(
d(−X), drg(X + ∆)

)]
(8)

where g = 1, ..., G and d(−X) is the flipped version of the
distance function to account for the fact that the hand could
have either the palm or the dorsum facing the camera. The
computation is performed for each of the candidate gesture,
thus obtaining a set Fρ containing a different feature value
fρg for each of them. As expected, ideally the correlation
with the correct gesture should have a larger value than the
other features.

D. Curvature features
This feature set describes the curvature of the hand edges

on the depth map. A scheme based on on integral invariants
[19], [20] has been used. The approach for the computation
of this feature is basically the same of [10]. The main steps
of the approach are here briefly recalled. The curvature
feature extractor algorithm takes as input the edge points of
the palm and fingers regions and the binary mask Bhand
corresponding to the hand samples on the depth map. A
set of circular masks with increasing radius is then built on
each edge sample (for the results S = 25 masks with radius
varying from 0.5cm to 5cm have been used, the radius
correspond to the scale level at which the computation is
performed).

The ratio between the number of samples falling in
Bhand for each circular mask and the size of the mask
is computed. The values of the ratios (i.e., curvatures)
range from 0 (extremely convex shape) to 1 (extremely
concave shape), with 0.5 corresponding to a straight edge.
The [0, 1] interval is quantized into N bins. Feature values
f cb,s collects how many edge samples have a curvature
of a value inside bin b at scale level s. The values are
finally normalized by the number of edge samples and
the feature vector Fc with B × S entries is built. For
faster processing, the circular masks can be replaced with
simpler square masks and then integral images can be
used for the computation. This approximation, even if not
perfectly rotation invariant, is significantly faster and the
performance loss is very small.

E. Connected components features

Another useful clue used for gesture recognition schemes
[21] is the convex hull of the hand shape in the depth map.
The idea is to compute the convex hull of the hand shape
in the depth map and to look for regions within the convex
hull region but not belonging to the hand. These typically
correspond to the empty regions between the fingers and
are a good clue to recognize the fingers arrangement. Let
S = Chull(B) − B be the difference between the convex
hull and the hand shape (see Fig. 6 a and b). Region S
is made of a few connected components Si. The size of
each region Si is compared with a threshold Tcc and the
ones that are smaller than the threshold are discarded (this
allows to avoid considering small components due to noise
as it is possible on the right of the hand in Fig. 6 c). The
output of this procedure is the set S = {Si : Si > Tcc}
(Fig. 6 c and d).

The feature set is given by the ratios between the area of
the each connected components and the convex hull area,
i.e.:

f cci =
area(Si|Si ∈ S)

area(Chull(B)))
(9)

where the areas have been sorted according to the angle of
their centroid with respect to the hand direction (i.e., from
the thumb to the little). These numbers are then collected
into vector Fcc.

a) b) c) d)

Fig. 6: Areas of the connected components: a) and b):
difference between the convex hull and the hand shape;
c) and d) connected components in set S highlighted in
green.

VI. GESTURE CLASSIFICATION

The approaches of Sections IV and V produce eight
different feature vectors, four for the Leap Motion data
and four for the depth data. Each vector describe some
relevant clues regarding the performed gesture and in order
to recognize it, a multi-class Support Vector Machine
classifier is used. There are 8 feature vectors grouped
into the two sets Vleap = [Fa,Fd,Fe,Fp] that contains
all the features extracted from Leap Motion data and
Vkin = [Fl,Fρ,Fc,Fcc] that collect the features computed
from depth information. Each vector can be used alone or
together with any of the other descriptors. The combination
of multiple features descriptors can be obtained by simply
concatenating the features vectors corresponding to the
selected features.
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Fig. 7: Feature vectors extracted from the two devices.

The target of the approach is to classify the performed
gestures into G classes, one for each gesture in the
considered database. A multi-class SVM classifier [22]
based on the one-against-one approach has been used. In
the employed scheme a set of G(G − 1)/2 binary SVM
classifiers are used to test each class against each other.
The output of each of them is chosen as a vote for a certain
gesture. For each sample in the test set, the gesture with
the maximum number of votes is selected as the output of
the classification.

In particular a non-linear Gaussian Radial Basis Function
(RBF) kernel has been selected and the classifier parameters
have tuned exploiting grid search and cross-validation on
the training set. Let us consider a training set containing
data from M users. The space of parameters (C, γ) of the
RBF kernel is divided with a regular grid. For each couple
of parameters the training set is divided into two parts, one
containing M − 1 users for training and the other with the
remaining user for validation and performance evaluation.
The procedure is repeated M times changing the user used
for the validation. The couple of parameters that give the
best accuracy on average are selected as the output of the
grid search. Finally the SVM has been trained on all the
M users of the training set with the optimal parameters.

VII. EXPERIMENTAL RESULTS

The results have been obtained using the setup depicted
in Fig. 2. A Leap Motion device and a Kinect have been
used to jointly acquire the data relative to the performed
gestures. The Kinect depth camera has been selected due
to its large diffusion, however any other depth camera,
e.g. Creative’s Senz3D or the second generation Kinect
can be used in the proposed approach. The two devices
have been jointly calibrated using the approach of Section
III and synchronized in time. A software synchronization
has been used: its precision is sufficient for the recognition
of gestures based on static poses like the ones considered
in this paper, for gesture based on fast movements prob-
ably more accurate synchronization approaches would be
needed. The considered dataset of gestures contains the
10 different gestures shown in Fig. 8. 14 different people
have been used and each user has repeated each gesture 10
times for a total of 1400 different data samples. Up to our
knowledge this is the first database containing both depth
data and Leap Motion data and it will be made publicly
available on the web in order to allow future comparisons
with other approaches.

Let us start from the Leap Motion device. Table I shows
the accuracy obtained using the classification algorithm of

Section VI on the data from this sensor. The 3D positions
of the fingertips give a very good representation of the
arrangement of the fingers and allow to obtain an accuracy
of 81.5%. They allow to recognize the majority of the
gestures even if the recognition of some gestures is not
always optimal, as it is possible to see from the confusion
matrix in Fig. 9. For example, gestures G2 and G3 are
sometimes confused with gesture G1.

Feature set Accuracy
Fingertips 3D positions (Fp) 81.5%

Fingertips distances (Fd) 76.1%
Fingertips angles (Fa) 74.2%

Fingertips elevations (Fe) 73.1%
Fd + Fa + Fe 80.9%

TABLE I: Performance with the Leap Motion data.

Fingertip distance features allow to obtain an accuracy
of about 76%, they are also able to recognize most gestures
but there are some critical issues, e.g. G2 and G3 are easily
confused. A relevant issue for this descriptor is the limited
accuracy of the hand direction estimation from the Leap
Motion that does not allow a precise match between the
fingertips and the corresponding angular regions (i.e., it
is not easy to recognize which finger has been raised if
a single finger is detected). The other two features have
slightly lower performance. The angles allow to obtain
an accuracy of 74.2% and a similar result (73%) can be
obtained from the elevations alone. The last 3 features can
be combined together since they capture different properties
of the fingers arrangement. Their combination leads to an
accuracy of almost 81%, better than any of the 3 features
alone. This result is quite similar to the performance of
the 3D positions, consistently with the fact that the two
distances from the center and the plane, together with the
angle can be viewed as a different representation of the
position of the point in 3D space.

Results from the Leap Motion data are good but not
completely satisfactory, better results can be obtained from
the depth data, that offers a more informative description
of the arrangement of the hand in 3D space. Notice that
depth contains the complete 3D structure of the hand but it
is also a lower-level scene description and a larger amount
of processing is needed in order to extract the features from
it.

Feature set Accuracy
Distance features (Fd) 94.4%

Correlations features (Fρ) 68.7%
Curvature features (Fc) 86.2%

Convex Hull features(Fcc) 70.5%
Fd + Fc 96.35%

TABLE II: Performance with the depth data.

Table II shows the results obtained from the depth in-



G1 G2 G3 G4 G5

G6 G7 G8 G9 G10

Fig. 8: Gestures from the American Sign Language (ASL) contained in the database that has been acquired for
experimental results.

125 3 9 3 0 0 0 0 0 0 125

42 79 19 0 0 0 0 0 0 0 79

20 13 98 6 0 0 3 0 0 0 98

4 0 0 126 0 0 7 0 1 2 126

7 7 4 3 106 2 3 3 0 5 106

1 0 4 0 4 117 2 2 0 10 117

2 0 5 11 0 0 114 4 1 3 114

0 0 0 5 4 0 4 116 0 11 116

0 1 0 1 0 0 0 2 136 0 136

0 0 2 0 5 1 7 1 0 124 124

1141 0,815

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

G1 0,89 0,02 0,06 0,02 0,00 0,00 0,00 0,00 0,00 0,00

G2 0,30 0,56 0,14 0,00 0,00 0,00 0,00 0,00 0,00 0,00

G3 0,14 0,09 0,70 0,04 0,00 0,00 0,02 0,00 0,00 0,00

G4 0,03 0,00 0,00 0,90 0,00 0,00 0,05 0,00 0,01 0,01

G5 0,05 0,05 0,03 0,02 0,76 0,01 0,02 0,02 0,00 0,04

G6 0,01 0,00 0,03 0,00 0,03 0,84 0,01 0,01 0,00 0,07

G7 0,01 0,00 0,04 0,08 0,00 0,00 0,81 0,03 0,01 0,02

G8 0,00 0,00 0,00 0,04 0,03 0,00 0,03 0,83 0,00 0,08

G9 0,00 0,01 0,00 0,01 0,00 0,00 0,00 0,01 0,97 0,00

G10 0,00 0,00 0,01 0,00 0,04 0,01 0,05 0,01 0,00 0,89

Fig. 9: Confusion matrix for the 3D positions from the Leap
Motion data. The larger errors have been highlighted.

formation acquired with a Kinect. Distance features are the
best performing descriptor and allow to obtain an accuracy
of 94.4%, much higher than the one that can be obtained
from the Leap Motion sensor. These descriptor alone allow
to recognize all the gestures with an high accuracy.

Correlation features have lower performance (68.7%).
This descriptor is also based on the distances of the
hand samples from the hand centroid, but compared to
the distances they contain a less informative description
(the feature vector size is also much smaller) that is not
sufficient for an accurate recognition. However thanks to
the small descriptor size and very fast computation of
the descriptor they still can be considered for applications
where the running time and the memory footprint of the
descriptor are critical.

Another very good descriptor is the curvature of the
hand contour. It allows a correct recognition of 86.2% of
the considered gestures. Only distance features outperforms
this descriptor. It has also the advantage that it do not rely
on the computation of the hand center and orientation,
making it very useful in situations where an estimation
of these parameters is difficult. Finally, the convex hull
features have an accuracy of 70.5%, slightly better than the
correlations even if not too impressive. Again its small size
and simple computation makes this descriptor interesting
when a trade-off between performance and accuracy is
needed.

The combination of multiple descriptors allows to im-
prove the performance, e.g., by combining the two best
performing descriptors, distances and curvatures a quite
impressive accuracy of 96.35% can be obtained as it is pos-
sible to see also from the corresponding confusion matrix
(Fig. 10). This is an indication that the different descriptors
capture different properties of the hand arrangement and
contain complementary information.

136 3 1 0 0 0 0 0 0 0 136

1 136 3 0 0 0 0 0 0 0 136

1 0 138 0 1 0 0 0 0 0 138

0 5 0 135 0 0 0 0 0 0 135

0 1 0 0 138 1 0 0 0 0 138

0 5 0 0 5 125 0 2 0 3 125

0 0 2 0 0 0 138 0 0 0 138

0 0 0 1 0 2 0 135 1 1 135

0 0 0 1 0 1 0 0 138 0 138

0 0 0 0 1 6 0 3 0 130 130

1349 0,963571

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

G1 0,97 0,02 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00

G2 0,01 0,97 0,02 0,00 0,00 0,00 0,00 0,00 0,00 0,00

G3 0,01 0,00 0,99 0,00 0,01 0,00 0,00 0,00 0,00 0,00

G4 0,00 0,04 0,00 0,96 0,00 0,00 0,00 0,00 0,00 0,00

G5 0,00 0,01 0,00 0,00 0,99 0,01 0,00 0,00 0,00 0,00

G6 0,00 0,04 0,00 0,00 0,04 0,89 0,00 0,01 0,00 0,02

G7 0,00 0,00 0,01 0,00 0,00 0,00 0,99 0,00 0,00 0,00

G8 0,00 0,00 0,00 0,01 0,00 0,01 0,00 0,96 0,01 0,01

G9 0,00 0,00 0,00 0,01 0,00 0,01 0,00 0,00 0,99 0,00

G10 0,00 0,00 0,00 0,00 0,01 0,04 0,00 0,02 0,00 0,93

Fig. 10: Confusion matrix for the combined use of distance
and curvature descriptors from depth data. The larger errors
have been highlighted.

Feature set Accuracy
Fd + Fc + Fp 96.5%

TABLE III: Performance from the combined use of the two
sensors.

Descriptors based on the Leap Motion data and on the
depth data can also be combined together. In the last test we
combined the 3D positions from the Leap Motion with the
two best descriptors from depth data, i.e., the distances and
the curvatures. The obtained accuracy is 96.5% as shown
in Table III. The corresponding confusion matrix (Fig. 11)
shows also how the recognition rate is very high for all
the considered gestures. The improvement with respect to
depth data alone is limited, as expected since the accuracy
from the 3D positions of the Leap Motion is much lower,
however a small improvement is present, showing that



some additional information content is present in the Leap
Motion data.

137 3 0 0 0 0 0 0 0 0 137

2 135 3 0 0 0 0 0 0 0 135

1 1 138 0 0 0 0 0 0 0 138

0 4 0 136 0 0 0 0 0 0 136

1 0 0 0 138 1 0 0 0 0 138

0 4 0 0 6 124 0 1 0 5 124

0 0 2 0 0 0 138 0 0 0 138

0 0 0 2 0 2 0 134 1 1 134

0 0 0 1 0 1 0 0 138 0 138

0 0 0 0 1 4 0 2 0 133 133

1351 0,965

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

G1 0,98 0,02 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

G2 0,01 0,96 0,02 0,00 0,00 0,00 0,00 0,00 0,00 0,00

G3 0,01 0,01 0,99 0,00 0,00 0,00 0,00 0,00 0,00 0,00

G4 0,00 0,03 0,00 0,97 0,00 0,00 0,00 0,00 0,00 0,00

G5 0,01 0,00 0,00 0,00 0,99 0,01 0,00 0,00 0,00 0,00

G6 0,00 0,03 0,00 0,00 0,04 0,89 0,00 0,01 0,00 0,04

G7 0,00 0,00 0,01 0,00 0,00 0,00 0,99 0,00 0,00 0,00

G8 0,00 0,00 0,00 0,01 0,00 0,01 0,00 0,96 0,01 0,01

G9 0,00 0,00 0,00 0,01 0,00 0,01 0,00 0,00 0,99 0,00

G10 0,00 0,00 0,00 0,00 0,01 0,03 0,00 0,01 0,00 0,95

Fig. 11: Confusion matrix for the combined use of Leap
Motion and depth data. The larger errors have been high-
lighted.

Finally, notice how the proposed approach is particularly
suitable for real time gesture recognition schemes. The
current implementation in C++ (that has not been fully
optimized) has been tested on a not too performing desktop
PC with an Intel Q6600 processor and 4Gb of RAM and
real-time performance have been obtained The initial hand
detection phase, that took 46ms in the implementation
of the approach of [10] and that we used to start the
development of this work can now be completed in a few
milliseconds thanks to the exploitation of the Leap Motion
centroid. The extraction of palm and fingers regions with
the circle fitting requires about 25ms. The orientation of
the hand is also directly computed from the Leap Motion
data (this step took about 4ms in the old approach). Feature
extraction is quite fast, the most demanding ones are curva-
ture descriptors that take about 28 ms to be computed while
the other features are way faster to be computed. Finally
SVM classification is performed in just 1ms. This allows to
obtain a frame rate of about 15fps if depth data is used with
respect to the 10fps achieved by the previous approach
on the same computer. Gesture recognition with the Leap
Motion data alone is very fast (just a few milliseconds) but
performances are also lower.

VIII. CONCLUSIONS

In this paper an effective gesture recognition pipeline for
the Leap Motion, for depth sensors and for their combined
usage has been proposed. The different nature of data
provided by the Leap Motion (i.e., a higher level but more
limited data description) with respect to the depth cameras,
poses challenging issues for which effective solutions have
been presented. An ad-hoc calibration scheme has allowed
to jointly calibrate the Leap Motion with depth sensors.
The limited number of points computed by the first device
makes this task quite challenging but the proposed scheme
allows to obtain a good accuracy sufficient for the joint
exploitation of the data from the two devices. Several
different feature sets have been presented for both sensors.
Four different types of features have been extracted from
the Leap Motion while different types of descriptors have
been computed from the depth data based on different clues
likes the distances from the hand centroid, the curvature of

the hand contour and the convex hull of the hand shape. It
has also been shown how to exploit Leap Motion data to
improve the computation time and accuracy of the depth
features.

Experimental results have shown how the data provided
by Leap Motion, even if not completely reliable, allows
to obtain a reasonable overall accuracy with the proposed
set of features and classification algorithm. A very good
accuracy can be obtained from depth data that is a more
complete description of the hand shape, in particular dis-
tance and curvature descriptors allow to obtain almost
optimal performances.

Future work will address the the recognition of dynamic
gestures with the proposed setup and improved schemes
for the detection and localization of the fingertips jointly
exploiting the data from the two sensors.
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