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Abstract—The recent introduction of novel acquisition de-
vices like the Leap Motion and the Kinect allows to obtain
a very informative description of the hand pose that can
be exploited for accurate gesture recognition. This paper
proposes a novel hand gesture recognition scheme explicitly
targeted to Leap Motion data. An ad-hoc feature set based on
the positions and orientation of the fingertips is computed and
fed into a multi-class SVM classifier in order to recognize the
performed gestures. A set of features is also extracted from
the depth computed from the Kinect and combined with the
Leap Motion ones in order to improve the recognition perfor-
mance. Experimental results present a comparison between
the accuracy that can be obtained from the two devices on
a subset of the American Manual Alphabet and show how,
by combining the two features sets, it is possible to achieve a
very high accuracy in real-time.

I. INTRODUCTION

Human-Robot Interaction (HRI) is a field of investigation
that is recently gaining particular interest, involving differ-
ent research areas from engineering to psychology [1]. The
development of robotics, artificial intelligence and human-
computer interaction systems has brought to the attention
of researchers new relevant issues, such as understanding
how people perceive the interaction with robots [2], how
robots should look like [3] and in what manners they could
be useful [4].

In this work we focused on the communication interface
between humans and robots. The aim is to apply novel
approaches for gesture recognition based on the analysis
of depth information in order to allow users to naturally
interact with robots [5]. This is a significant and sometimes
undervalued perspective for human-robot interaction.

Hand gesture recognition using vision-based approaches
is an intriguing topic that has attracted a large interest
in the last years [6]. It can be applied in many different
fields including robotics and in particular human-robot
interaction. A human-to-machine communication can be
established by using a predefined set of poses or gestures
recognized by a vision system. It is possible to associate a
precise meaning (or a command the robot will perform) to
each sign. This permits making the interplay with robots

more intuitive and enhancing the human-robot interaction
up to the level of a human-human one. In this case also
the robot plays a different role. During social interactions
it must have an active part in order to really engage the
human user. For example, recognizing body language, a
robot can understand the mood of the human user adapting
its behavior to it [7].

Until a few years ago, most approaches were based on
videos acquired by standard cameras [6], [8]; however,
relying on a simple 2D representation is a great limitation
since that representation is not always sufficient to capture
the complex movements and inter-occlusions of the hand
shape.

The recent introduction of low cost consumer depth cam-
eras, e.g., Time-Of-Flight (ToF) cameras and MS KinectTM

[9], has opened the way to a new family of algorithms that
exploit the depth information for hand gesture recognition.
The improved accuracy in modelling three-dimensional
body poses has permitted removing the need for physical
devices in human-robot interaction such as gloves, key-
boards or other controllers.

HRI system based on depth cameras apply machine-
learning techniques to a set of relevant features extracted
from the depth data. The approach in [10] computes a
descriptor from silhouettes and cell occupancy features;
this is then fed to a classifier based on action graphs.
Both the approaches in [11] and [12] use volumetric shape
descriptors processed by a classifier based on Support
Vector Machines (SVM). Another possibility is to exploit
the histograms of the distance of hand edge points from
the hand center in order to recognize the gestures [13],
[14], [15]. Different types of features can also be combined
together [16].

The paper is organized in the following way. Sections
II presents the proposed hand gesture recognition strat-
egy, while Section III describes the body-pose detection
algorithm. These tools are integrated in a human-robot
interaction scheme, which is described in Section IV. A
case study referring to a simple rock-paper-scissors game
is presented in Section V. Finally Section VI draws the
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Fig. 1: Pipeline of the proposed approach.

conclusions.

II. HAND GESTURE RECOGNITION FROM
DEPTH DATA

Fig. 1 shows a general overview of the employed hand
gesture recognition approach. The approach is based on
the method proposed in [16]. In the first step, the hand is
extracted from the depth acquired by the Kinect. Then, a
set of relevant features is extracted from the hand shape.
Finally a multi-class Support Vector Machine classifier is
applied to the extracted features in order to recognize the
performed gesture.

A. Hand Recognition

In the first step the hand is extracted from the color and
depth data provided by the Kinect. Calibration information
is used to obtain a set of 3D points Xi from the depth
data. The analysis starts by extracting the point in the
depth map closest to the user (Xc). The points that have
a depth value close to the one of Xc and a 3D distance
from it within a threshold of about 20[cm] are extracted
and used as a first estimate of the candidate hand region. A
further check on hand color and size is then performed
to avoid to recognize possible objects positioned at the
same distance as the hand. At this point the highest density
region is found by applying a Gaussian filter with a large
standard deviation to the mask representing the extracted
points. Finally, starting from the highest density point, a
circle is fitted on the hand mask such that its area roughly
approximates the area corresponding to the palm (see Fig.
2). Principal Component Analysis (PCA) is then applied to
the detected points in order to obtain an estimate of the
hand orientation. Finally the hand points are divided into
the palm region (set P , i.e., the points inside the circle),
the fingers (set F , i.e., the points outside the circle in the
direction of the axis pointing to the fingertips found by the
PCA), and the wrist region (set W , i.e., the points outside
the circle in the opposite direction w.r.t. the fingertips).

a) b) c)

d) e) f)

Fig. 2: Extraction of the hand: a) Acquired color image;
b) Acquired depth map; c) Extracted hand samples (the
closest sample is depicted in green); d) Output of the
Gaussian filter applied on the mask corresponding to H
with the maximum highlighted in red; e) Circle fitted on the
hand; f) Palm (blue), finger (red) and wrist (green) regions
subdivision.

B. Feature Extraction

Two different types of features are computed from data
extracted in the previous step. The first set of features
consists of a histogram of the distances of the hand points
from the hand center. Basically, the center of the circle
is used as reference point and an histogram is built, as
described in [11], by considering for each angular direction
the maximum of the point distances from the center, i.e.:

L(θq) = max
Xi∈I(θq)

dXi
(1)

where I(θq) is the angular sector of the hand correspond-
ing to the direction θq and dXi

is the distance between
point Xi and the hand center. The computed histogram is
compared with a set of reference histograms Lrg(θ), one for
each gesture g. The maximum of the correlation between
the current histogram L(θq) and a shifted version of the
reference histogram Lrg(θ) is used in order to compute the
precise hand orientation and refine the results of the PCA.
A set of angular regions I(θg,j) associated to each finger
j = 1, ..., 5 in the gesture g is defined on the histogram,
and the maximum is selected as feature value inside each
region, normalized by the middle finger’s length:

fdg,j = max
I(θg,j)

Lg(θ)

Lmax
(2)

where g = 1, ..., G for an alphabet of G gestures. Note
that the computation is performed for each of the candidate
gesture, thus obtaining a different feature value for each of
the candidate gestures.

The second feature set is based on the curvature of the
hand contour. This descriptor is based on a multi-scale
integral operator [17], [18] and is computed as described in
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Fig. 3: Feature vectors extracted from the two devices.

[16] and [15]. The algorithm takes as input the edges of the
palm and fingers regions and the binary mask representing
the hand region on the depth map. A set of circular masks
with increasing radius centered on each edge sample is built
(we used S = 25 masks with radius varying from 0.5 cm to
5 cm, notice that the radius corresponds to the scale level
at which the computation is performed).

The ratio between the number of samples falling inside
the hand shape and the size of the mask is computed
for each circular mask. The values of the ratios represent
the local curvature of the edge and range from 0 for a
convex section of the edge to 1 for a concave one, with
0.5 corresponding to a straight edge. The [0, 1] interval is
then quantized into N bins and the feature values f cb,s are
computed by counting the number of edge samples having
a curvature value inside bin b at scale level s.

The curvature values are finally normalized by the num-
ber of edge samples and the feature vector Fc with B × S
entries is built. The multi-scale descriptor is made of B×S
entries Ci, i = 1, ..., B×S, where B is the number of bins
and S is the number of employed scale levels.

C. Hand Gesture Classification

The feature extraction approach provides two feature
vectors, each one describing relevant properties of the hand
samples. In order to recognize the performed gestures, the
two vectors are concatenated and sent to a multi-class
Support Vector Machine classifier. The target is to assign
the feature vectors to G classes (with G = 3 for the sample
rock-scissor-paper game of the experimental results) corre-
sponding to the various gestures of the considered database.
A multi-class SVM classifier based on the one-against-one
approach has been used, i.e., a set of G(G − 1)/2 binary
SVM classifiers are used to test each class against each
other and each output is chosen as a vote for a certain
gesture. The gesture with the maximum number of votes is
selected as the output of the classifier. In particular we used
the SVM implementation in the LIBSVM package [19],
together with a non-linear Gaussian Radial Basis Function
(RBF) kernel tuned by means of grid search and cross-
validation on a sample training set.

III. BODY GESTURE RECOGNITION FROM
SKELETAL TRACKING

In this work skeletal tracking capabilities come from a
software development kit released by OpenNI. In particular,
the skeletal tracking algorithm is implemented in a freeware
middleware called NITE built on top of the OpenNI SDK.

NITE uses the information provided by a RGB-D sensor
to estimate the position of several joints of the human body
at a frame rate of 30 fps that is a good trade-off between

speed and precision. Differently from approaches based
only on RGB images, these kind of sensors based also on
depth data, allow the tracker to be more robust with respect
to illumination changes.

The skeleton information provided by the NITE mid-
dleware consists of N = 15 joints from head to foot.
Each joint is described by its position (a point in 3D
space) and orientation (using quaternions). On these data,
we perform two kinds of normalization: firstly we scale
the joints positions in order to normalize the skeleton size,
thus achieving invariance among different people, then we
normalize every feature to zero mean and unit variance.
Starting from the normalized data, we extract three kinds
of descriptors: a first skeleton descriptor (dP ) is made
of the set of joints positions concatenated one to each
other, the second one (dO) contains the normalized joints
orientations, finally, we considered also the concatenation
of both positions and orientations (dTOT ) of each joint:

dP = [x1 y1 z1 . . . xN yN zN ] , (3)

dO =
[
q11 q

2
1 q

3
1 q

4
1 . . . q1N q2N q3N q4N

]
, (4)

dTOT =
[
d1
P d1

O . . . dNP dNO
]
. (5)

These descriptors have been provided as features for the
classification process. A Gaussian Mixture Model (GMM)-
based classifier has been used in order to compare the
set of predefined body gestures to the ones performed by
the user. The described technique could be extended by
considering a sequence of descriptors equally spaced in
time in order to apply the resulting features to human
activity recognition [20], [21] and broaden the interaction
capabilities of our framework.

IV. ROBOT CONTROL AND SYSTEM
INTEGRATION

The information provided by both hand and skeletal ges-
ture recognition systems are analyzed in order to obtain a
proper robot motion. Robot behavior really depends on the
application, but the complete framework can be separated
in different layers in order to easily extend the basic system
to new tasks. We created three independent layers: gesture
recognition, decision making, robot controller. These layers
are connected one to each other by means of a very diffuse
robotic framework: Robot Operating System.

Robot Operating System (ROS) [22] is an open-source,
meta-operating system that provides, together with standard
services peculiar to an operating system (e.g., hardware
abstraction, low-level device control, message-passing be-
tween processes, package management), tools and libraries
useful for typical robotics applications (e.g., navigation,
motion planning, image and 3D data processing). The
primary goal of ROS is to support the reuse of code in
robotics research and, therefore, it presents a simplified but
lightweight design with clean functional interfaces.

During a human-robot interaction task, the three layers
play different roles. The gesture recognition layer deals



with the acquisition of information from a camera in order
to recognize gestures performed by users. The decision
making layer is on a higher level of abstraction. Information
is processed by ROS and classified by an AI algorithm
in order to make the robot take its decision. Finally,
the robot controller layer is responsible of motion. This
layer physically modifies the behavior of the robot sending
commands to the servomotors. Even though they are strictly
independent also in what concerns implementation, the
three levels can interact sending or receiving messages
through ROS. This means that we can use different robots,
AI algorithms or vision systems by maintaining the same
interface.

V. CASE STUDY: A SIMPLE
ROCK-PAPER-SCISSORS GAME

In order to test the developed framework a very simple
even popular game has been used, namely rock-paper-
scissors. Users are asked to play against a robotic opponent
on several rounds. At each round, both the players (human
and robot) have to perform one of the 3 gestures depicted in
Fig. 4. The winner is chosen according to the well-known
rules of the game. Game settings and moves can be selected
by human users without any remote controls or keyboards:
only the gesture recognition system is involved, so that
the interaction will result more natural and user-friendly
as possible.

Rock Paper Scissors

Fig. 4: Sample depth images for the 3 gestures.

a) b) c)

Fig. 5: Poses: a) corresponds to 3 games, b) to 2 games
and c) to 1 game. Each game is composed by three rounds.

Users are able to select the number of games to play by
assuming one of the pose shown in Fig. 5 once they are
recognized by the system. To each position corresponds
a number varying from 1 to 3. Each game is composed
by three rounds. Once a round is started, the hand gesture
recognition algorithm looks at the move played by the hu-
man. At the same time, the decision making system chooses
the robot gesture by using an Artificial Intelligence (AI)

algorithm we developed [23]. The algorithm is based on the
use of Gaussian Mixture Model (GMM). The idea under
this approach is using a history of three previous rounds
in order to forecast the next human move. This is a very
important aspect in the natural interaction between human
and robot, in fact, people are stimulated in confronting with
a skilled opponent. Finally, the robot controller translates
high level commands to motor movements in order to make
a LEGO Mindstorms NXT robotic platform perform the
proper gesture (Fig. 6).

Notice that the approach of Section II, that has been
developed for more complex settings with a larger number
of gestures, has very good performances in this sample
application. In order to evaluate its effectiveness we asked
to 14 different people to perform the 3 gestures 10 times
each for a total of 14×10×3 = 420 different executions of
the gestures. Then we performed a set of tests, each time
training the system on 13 people and leaving out one person
for the testing. In this way (similar to the cross-validation
approach) the performances are evaluated for each person
without any training from gestures performed by the same
tested user, as it will happen in a real setting where a
new user starts interacting with the robot. The proposed
approach has achieved an average accuracy of 99.28% with
this testing protocol.

a) b) c)

Fig. 6: LEGO Mindstorms NXT performing the three
gestures: a) rock, b) paper and c) scissors.

VI. CONCLUSIONS

In this paper a framework for gesture-based human-robot
interaction has been proposed. Two different approaches for
the exploitation of depth data from low-cost cameras have
been proposed for both the recognition of hand and full-
body gestures. Depth-based gesture recognition schemes
allow a more natural interaction with the robot and a sample
application based on the simple rock-scissor-paper game
has been presented. Further research will be devoted to the
application of the proposed framework in more complex
scenarios.
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