
3D hand shape analysis for palm and fingers
identification

Ludovico Minto, Giulio Marin and Pietro Zanuttigh
Department of Information Engineering

University of Padova, Italy

Abstract—This paper proposes a novel scheme for the
extraction and identification of the palm and the fingers from
a single depth map. The hand is firstly segmented from the
rest of the scene, then it is divided into palm and fingers
regions. For this task we employed a novel scheme that exploits
the idea that fingers have a tubular shape while the palm is
more planar. Following this rationale we applied a contraction
guided by the normals in order to reduce the fingers into
thinner structures that can be identified by analyzing the
changes in the point density. Density-based clustering is then
applied and finally a linear programming based approach is
employed to identify the various fingers. Experimental results
prove the effectiveness of the proposed approach even in
complex situations and in presence of inter-occlusions between
the various fingers.

I. INTRODUCTION

Hand pose estimation is a very challenging task due
to the large number of degrees of freedom associated to
the hand movements and to the large number of inter-
occlusions between the various fingers. Several computer
vision approaches have been presented for this problem
[1], but its solution from a single video stream remains
very difficult. The recent introduction of consumer depth
cameras [2] have made depth acquisition available to the
mass market and has paved the way to the introduction of
a set of new hand pose estimation approaches exploiting
the three-dimensional information contained in depth data.

This paper follows this rationale and introduces a novel
hand shape analysis scheme exploiting depth data from a
consumer depth camera. The proposed approach works on a
single depth map without exploiting the temporal coherence
and is based on two main steps. It firstly identifies the
3D points representing the hand shape and divides them
into the palm and the fingers region. This is achieved by
combining a novel approach that contracts high curvature
regions typically associated to fingers into thinner structures
with more standard techniques based on shape fitting and
clustering. Then the fingers region is further subdivided into
segments corresponding to the various fingers. For this task
density-based clustering is exploited together with a linear
programming optimization that is used to recognize the
clusters belonging to the same finger. Challenging issues
like the occlusions due to the fingers folded over the palm
or inter occlusions between the various fingers are handled
reliably by the proposed approach as the experimental
results show.

II. RELATED WORKS

Hand pose estimation is a long-term research field and
a large number of approaches based on video data have
been proposed [1]. As previously noted, a bidimensional
description is often not sufficient to solve this problem
and recent schemes have focused on the exploitation of
3D information acquired with consumer depth cameras.

In particular some recent works focused on the estimation
of the hand pose from a single depth map. The work of
Keskin et Al. [3] has adapted the Kinect skeletal tracking
scheme to hand pose estimation. A coarse-to-fine search
based on Latent Regression Forests, has been proposed
in [4]. Regression Forests are also used in [5], where the
error between the data and the model based on subdivision
surfaces is optimized. Another very recent approach is [6]
where the hand is modeled with a set of spheres and a cost
function is optimized using Particle Swarm Optimization.
The approach of [7] searches the optimal solution in the
high-dimensional parameter space of hand configurations
by using an evolutionary optimization technique. Dense
feature extraction exploiting convolutional networks has
been used for hand pose estimation in [8]. Another ap-
proach exploiting convolutional networks is [9]. Finally
[10] uses transductive regression forest exploiting both real
and synthetic data for the training.

III. PROPOSED APPROACH

The target of the proposed algorithm is to identify the
five fingers and the palm region by processing the point
cloud of the hand acquired by a depth sensor. Firstly the
hand point cloud Hs that will be used as input for the
following stages is extracted from the rest of the scene using
the method proposed in [11], [12]. This method exploits
a combination of thresholding of the depth values and
geometrical constraints on the object size to recognize and
segment the hand from the rest of the scene. The proposed
approach then follows the pipeline shown in Fig. 1, as
described in detail in this section.

Point cloud Pre-
processing

Normal
Guided

Contraction

Palm
detection

Fingers
classification

Hand
segmentation

Fig. 1: Pipeline of the proposed approach.



A. Point cloud pre-processing

The segmented hand point cloud Hs is pre-processed to
remove some artifacts typical of low cost depth cameras.
Firstly, isolated points are removed by using a statistical
outlier removal: for each point, the mean distance of the k
nearest neighbors is computed, then the mean and standard
deviation of the distances are estimated. Points having
too high average distance from the mean are classified as
outliers. Notice how in this step we are interested in remov-
ing only artifacts, therefore the threshold to discriminate
outliers is relatively high in order to reduce the chance
of removing relevant points. A bilateral filter [13] is then
applied in order to reduce the noise while preserving the
details and edges of the hand shape. After these steps, a
filtered point cloud H = {p1, ..., pn} containing the hand
samples is available. A reference gesture has been chosen to
visualize all the intermediate processing, the corresponding
point cloud H is shown in Fig. 2a.

B. Normal Guided Contraction

A key aspect of the proposed approach is the point
cloud processing scheme, that we will denote with Normal
Guided Contraction (NGC), introduced in order to better
highlight the fingers region. By analyzing the hand shape,
it is clear that fingers have a tubular shape while the region
of the palm is mostly planar. We exploit this topological
difference to better detect and separate the various fingers.
From the point cloud we are able to compute for each
point pi a unit vector ni that represents quite accurately
the normal to the surface in that point. A new point cloud
Hc = {pc1, ..., pcn} is built by moving each point pi in the
direction opposite to the surface normal ni at that location,
i.e.:

pci = pi − tni (1)

The offset t is set to a fixed value, corresponding ap-
proximately to the average radius of a finger, in order to
maximize the contraction of the fingers regions (for the
experimental results we used t = 9[mm]). In this way
the tubular surfaces are contracted into thinner structures,
while planar surfaces are just shifted of a small amount
in the direction perpendicular to the plane, keeping the
same point density. The idea is that after the contraction
step, the high density regions are more likely to be fingers
while low density regions are associated to the palm, as
can be seen in Fig. 2b. From the figure (look at the pinkie
and ring fingers) it is also possible to notice how attached
fingers turn out to be spatially more separated then they
were before contraction, making easier the task of dividing
fingers very close one to the other. Nevertheless, some
difficulties may arise when trying to properly recognize the
fingers by directly looking at the contracted cloud density,
since there may be regions, e.g. the edge of the palm,
which could have a high density without being fingers. The
resulting point cloud Hc, shown in Fig. 2b, is the input for
the next step.

a) b)

Fig. 2: Normal guided contraction of the hand point cloud:
a) Original point cloud filtered (H); b) Contracted version
of the point cloud (Hc).

C. Palm Detection

The next step is the segmentation of the hand into
the palm and fingers region. This operation is simple in
the case of raised fingers but becomes very challenging
when the fingers are bent over the palm. Notice how
many approaches based on the hand silhouette and also
on depth data, e.g., [12], [14], are able to recognize only
the raised fingers and typically assign to the palm region
all the samples in the lower hand area including the ones
corresponding to bent fingers.

After the NGC, we intuitively associate the samples
of Hc within the high density regions to the fingers, the
remaining points belonging to the palm. A naive approach
to divide the two clusters is to consider a threshold on
the number of points inside a spherical neighborhood of a
given point in the contracted cloud. Some regions of the
palm showing an initial density greater than the one of
finger samples may however maintain a final high density
even when subject to a slight contraction. Instead, the
number of misclassified points is greatly reduced if, given
a point, we consider its neighborhood and compare the
original spacing between samples in the point cloud H
with the spacing in the contracted point cloud Hc. In
order to label the ith point in the cloud as finger F or
palm P , we first consider the set of its k closest points
in the contracted cloud N c

i,k = {pcj1 , ..., p
c
jk
} and compute

their average distance from pci . We then consider the same
neighbors as they appears in the original cloud, that is
Ni,k = {pj1 , ..., pjk}, and compute their average distance
from pi. The ratio between the average distances before
and after the contraction is then compared to the average
of the same ratio computed in the overall hand point cloud.
Points with a ratio greater than the average are assigned to
the finger set F while the others are assigned to the palm
set P , i.e,:

d̄i =

∑k
s=1‖pjs − pi‖

k

d̄ci =

∑k
s=1‖pcjs − p

c
i‖

k
ri = d̄i/d̄ci

r̄ =

∑n
i=1 ri
n

(2)



ri < r̄ ⇒ pci ∈ P
ri ≥ r̄ ⇒ pci ∈ F

(3)

Fig. 3 helps to better understand this step. Let us first
consider a region associated to fingers (shown in Fig. 3a),
the average spacing between a point and its neighbors in
N c

i,k is much smaller than the one computed with respect
to Ni,k. In Fig. 3b, an internal region of the palm is shown,
where the spacing does not decrease after the contraction,
as the normals in this region are almost parallel. Fig. 3c
shows instead a boundary region of the palm, where the
spacing decreases but not as significantly as in the fingers
region. Here in fact, differently from the fingers, there are
more parallel normals or in general the curvature is less
pronounced. We decided to use the mean of all the ratios
as threshold value, but of course a different thresholding
criteria can be used. Fig. 4a shows the output of this first
raw assignment; notice how, by working with point clouds
and using densities in the 3D space, the proposed approach
is invariant to rotations and to the orientation of the hand.

a) b) c)

Fig. 3: Difference of the density before and after the
contraction for three particular regions (best viewed in
colors, blue points belong to the original point cloud H,
red points belong to the contracted point cloud Hc): a)
Fingers region; b) Palm region; c) Palm edge region.

After this operation, there could still be some isolated
spots of erroneously classified points, especially along the
palm edges. A refinement process is therefore needed. In
particular, small spots labeled as fingers surrounded by
larger areas labeled as palm are very likely to be artifacts.
For this reason we iteratively check for each point the ratio
between palm points and finger points in a neighborhood of
the point itself and update its label according to this ratio.
To be more robust, we define two thresholds δf and δp:

|N c
i,k ∩ F|

|N c
i,k ∩ P|

> δf ⇒ pci ∈ F

|N c
i,k ∩ P|

|N c
i,k ∩ F|

> δp ⇒ pci ∈ P
(4)

The two thresholds should be both larger than 1 (e.g. δf =
1.2 and δp = 1.5 in the experimental results), in order to
ensure that the assignment is changed only if the sample is
surrounded by a large set of samples in the other region.
Different values however do not affect too much the results.
From Fig. 4c we can notice how the small spots classified as
fingers in the region of the palm by the first raw estimation
are now correctly classified.

At this point we have a good estimate of the region of
the palm and we can compute the best plane fitting the
points in P using SVD and RANSAC [15]. Exploiting this
information we get the normal of the plane that represents
a good estimate of the hand orientation, a very useful
information for any gesture recognition and pose estimation
approach. Finally, in order to help the clustering of the
fingers in the following step, isolated points belonging to
F are removed from Hc. Notice that after the contraction,
fingers samples are typically collapsed into thin regions.
Thus, the outlier removal can be applied using a more
strict threshold without the risk of removing relevant points,
obtaining better results than in the initial removal step. The
points marked as isolated are removed also from H.

a) b) c)

Fig. 4: Fingers and palm classification according to the ratio
of the density before and after the contraction (best viewed
in colors, red samples are associated to fingers, black to
the palm): a) Contracted cloud with the labels after the
first assignment; b) Refinement process: in blue the finger
points that are relabeled as palm, in green the palm points
that are relabeled as fingers; c) Final assignment after the
refinement.

D. Fingers Identification

We based our finger detection scheme on the notion of
density, therefore we decided to use Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) [16] to
cluster points in F . This algorithm proved to have better
performances than standard clustering techniques on this
particular type of data. In particular it is able to properly
extend the clusters along the fingers point clouds which
after the contraction are typically made of thin dense
regions with sharp turns in correspondence of finger joints.
DBSCAN requires two parameters: the radius ε of the
sphere to be used to check if neighbors are reachable, and
the minimum number of points that have to be in the ε-
neighborhood to consider the point in the cluster. In this
step we do not force the output to have five clusters, rather
we set the parameters in order to be sure that the algorithm
does not cluster more than one finger together (i.e., we
slightly over-segment, allowing a finger to be split into
more segments but ensuring that multiple fingers are not
included in a single segment). This algorithm has several
advantages over other classical data clustering algorithms
when applied to this specific task, since it does not require
to specify the number of clusters to search for, and it is
able to discover noise and outliers. Furthermore, it properly



handles arbitrary shaped clusters. The input of DBSCAN
is the filtered fingers region shown in red in Fig. 4b and
the result is shown in Fig. 5a.

a) b) c)

Fig. 5: Fingers classification: a) Clusters computed by the
DBSCAN algorithm, each color corresponds to a different
cluster; b) Fingers classification (shown on the contracted
point) given by the solution of the linear assignment prob-
lem; c) Fingers classification shown on the original point
cloud.

The task of gathering together clusters belonging to
the same finger is not easy. We address this problem by
modeling it as a linear binary optimization problem. As
a basis for our approach there is the idea that clusters
belonging to the same finger are also related by a certain
measure of proximity, e.g., they cannot be too far from each
other, nor their directions can be too dissimilar, provided
that a main direction can be identified for each of the
two clusters. In particular, we model the clusters and their
similarity as an undirected weighted graph. Our aim is to
recognize on that graph five paths, each going through a
sequence of clusters belonging to the same finger, by trying
to minimize penalties associated to links between unrelated
clusters.

Before introducing our binary LP model, we set here
some notation. In particular, let C = {c1, . . . , cm} be the
set of clusters returned by DBSCAN. For each of them, we
identify the two furthest areas with respect to the elongation
of the cluster itself, which are likely to well approximate
the region where other clusters belonging to the same finger
might be attached. We build an undirected weighted graph
G = (V,E) where nodes V are couples of nodes vi,1 and
vi,2 associated to the ending locations of each cluster ci (the
nodes of the graph in Fig. 6), and edges E, connecting
nodes, taking into account a similarity measure among
clusters. Over the graph G we define a linear assignment
problem that assigns each segment to the corresponding
finger l where l ∈ L = {1, . . . , 5}.

We call Ein the set of inner edges connecting two ending
points of the same cluster (the black edges in Fig. 6),
whereas Eout the set of edges between ending points of
different clusters (outer edges). Instead of considering all
the links between nodes vi,k and vj,h with i 6= j, the
spatial distance between the ending points is computed and
only the links between cluster extremities whose distance
is below a certain threshold are considered, so that the
size of Eout is considerably reduced. The set of these
links is shown in red in Fig. 6. We also consider two

additional nodes called source s and sink f, together with
the edges connecting each ending point with the source
and the sink, Es and Ef respectively (these two sets are
represented by dotted lines in Fig. 6). The sets E and
V will be therefore E = {Ein ∪ Eout ∪ Es ∪ Ef} and
V = {v1,1, v1,2, . . . vm,1, vm,2} ∪ {s, f}.

We define for each edge in Eout a cost value W which
takes into account for the similarity between connected
clusters. The idea is that two clusters can be considered
similar if they are spatially close to each other and if they
are aligned. W (e), the cost of an edge e ∈ Eout between
vi,k and vj,h, is therefore:

We = d(vi,k, vj,h) · (1− a(ci, cj)) (5)

where d(vi,k, vj,h) is the distance between the two nodes,
while a(ci, cj) is a measure of the alignment between the
two clusters. The alignment is computed by considering all
the lines passing through two points, the first in one cluster
and the second in the other cluster, and finding the line that
has the largest number of points at a small distance from it
using a RANSAC approach. The ratio between the number
of close points and the total number of points in the two
clusters gives the alignment a. Both d and a are scaled in
order to obtain weights in the range (0, 1).

Let Xl,e and Yl,v be binary variables such that:

Xl,e = 1 if label l is assigned to edge e, 0 otherwise
Yl,v = 1 if label l is assigned to vertex v, 0 otherwise

(6)

the binary LP formulation can be stated as the minimization
of: ∑

l∈L

∑
e∈Eout

WeXl,e (7)

with the following constraints:∑
l∈L

Xl,e ≤ 1 ∀e ∈ E (8a)∑
l∈L

Xl,e = 1 ∀e ∈ Ein (8b)∑
l∈L

Yl,v = 1 ∀v ∈ V \ {s, f} (8c)∑
e∈star(s)

Xl,e = 1 ∀l ∈ L (8d)

∑
e∈star(f)

Xl,e = 1 ∀l ∈ L (8e)

∑
e∈star(v)

Xl,e − 2Yl,v = 0 ∀v ∈ V \ {s, f}, l ∈ L (8f)

where the constraint (8a) assigns at most one label to each
edge, (8b) assigns exactly one label to each inner edge,
(8c) assigns exactly one label to each vertex, except for
the source and the sink, (8d) ensures that for each label l,
there exists exactly one edge incident to the source which is
assigned to label l, the same holds for the sink (8e). Finally,
equation (8f) ensures that for each vertex, except for the



source and the sink, there are exactly two edges incident to
the vertex whose labels are the same as the label associated
to the vertex. Moreover, while solving the linear program,
specific constraints may be added in order to prevent the
existence in the solution of cycles of edges having the same
label (rare outcome during tests). Fig. 5b and Fig. 5c show
the result of this linear assignment problem with the fingers
clusters in Fig. 5a as input.

Finally notice how the output of the proposed approach
can be used for a first identification of the various fingers
(i.e., tell which segment is the thumb, index and so on) by
simply assigning a set of labels to the clusters based on
the angle between the vector connecting the hand center to
the cluster centroid and a reference direction. This requires
that the 5 fingers are visible in the acquired depth map and
can fail in some complex configurations with fingers bent
one over the other (e.g., gesture G8 in Fig. 10). A more
refined recognition scheme will be subject of future work.

v

Fig. 6: Sample graph for the LP optimization. The black
edges are the inner edges connecting the two ending points
of each cluster, while the red ones are the outer edges. The
edges coming out from the source and the sink are depicted
in gray. (Best viewed in colors.)

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed
approach, we acquired a dataset of gestures using a Creative
SENZ3D depth camera. The dataset contains 16 different
gestures repeated 20 times for a total of 320 different
acquisitions from 4 different users. Color data has also been
acquired but notice that the proposed approach does not use
color information. A sample image and depth map for each
of the gestures is shown in Fig. 7. The hands have been
acquired at a distance of around 30 [cm], with an hand
typically covering an area of around 150× 150 [pixels] on
average.

Let us start from the palm detection scheme of Section
III-C. The palm region is almost always correctly assigned,
resulting in very accurate detections except for some rare
cases in which the portion of the palm close to the pinkie
is assigned to the fingers region. Some examples and a
comparison with [12] are shown in Fig. 8, notice how fin-
gers bent over the palm are correctly recognized, differently
from approaches like [12] or [14] that can not handle this
situation.

The accuracy of the proposed finger identification ap-
proach is reported in Table I, while Figures 9 and 10
show some visual examples of the output of the proposed
algorithm (i.e., palm detection and fingers identification).
The table shows in the first column the average accuracy
of the proposed approach for fingers identification on the
considered dataset (i.e., the percentage of identified fingers).
The other three columns report the type of errors that led to
the wrong identification, i.e., if a finger is not detected, if it
is split in two or more parts or if multiple fingers are joined
together. Notice that since multiple errors can be made on
the same fingers, in some case the sum of the percentages
in a row can be greater than 100%.

The fingers segmentation is a more challenging problem.
As expected, the proposed algorithm correctly handles the
simplest situations, e.g., the open hand (G1 and G15), as
it is shown in the first example of Fig. 9. Also a bit more
complex situations where the fingers are closer each other
but not occluded are perfectly handled, e.g., gestures G3,
G12 and G14. In gestures where the fingers are more close
together, e.g. G5, G9 or G10 some errors start to appear
but the recognition rate is still very high (typically between
95% and 98%). Some examples of the performance in
these situations are also represented in Fig. 9. Another
challenging situation is when the fingertips are touching
each other, e.g., gesture G6, G13 and G16. Also here the
recognition rate is very good (the most critical gesture
is G13 with a recognition rate of 91%). Notice that on
these gestures the most common error is the joining of the
two touching fingers, Fig. 10 shows a couple of the few
cases in which the algorithm fails to handle this situation.
Finally, some fingers (typically the thumb) can occlude
others making more challenging the identification of the
covered fingers. The approach is quite solid also with this
issue. Notice that the number of recognized fingers is more
than 90% on all the considered gestures.

Finally, even if the considered gesture is mostly frontal,
the proposed approach is able to work also when the
hand is inclined in various directions with relatively large
inclinations (an example is shown in Fig. 10). In particular,
working with the point cloud in the 3D space and not in
the 2D domain makes our algorithm invariant to the hand
orientation w.r.t. the camera. Only when the hand is almost
sideways errors start to appear, mostly due to fingers that
cannot be seen.

On average, the algorithm correctly identifies more than
96% of the fingers. The most common error is when the
fingers classification step collapses more than one finger to-
gether (about 2.4% of the fingers), mostly happening when
the fingertips are touching each other or the fingers are bent
one over the other. Notice that the proposed approach does
not use skeletal information and can only rely on the normal
guided contraction followed by segmentation to separate the
fingers. In some situations (only 1.5% of the times) a finger
can be split in two parts, which happens due to occlusions
or to particular poses of the thumb. Also, a finger can be



G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16

Fig. 7: Sample images and depth maps for each of the gestures in the database.

Fig. 8: Palm and finger segmentation: (first row) Our
approach; (second row) Dominio et Al [12]

Fig. 9: Output of the proposed approach on some sample
gestures: (from the left) G1, G3, G4, G5, G10, G11, G13,
G14. (Best viewed in colors).

missed by the algorithm because it is too occluded, but this
happens very seldom, only in 0.7% of the cases.

Concerning the computational complexity, the proposed
approach is not particularly CPU demanding. Very fast
normal computation approaches already exist and after
normal extraction, the contraction is a simple operation that
can be executed in real-time. Palm and fingers segmentation
do not require complex operations and the operations of

Fig. 10: Examples of the most challenging configurations
for the proposed approach: (columns, from the left) gestures
G2, G6, G8, G16; (first row) correct recognitions; (second
row) classifications with issues. (Best viewed in colors).

Gesture Correctly Missing Joined Split
recognized Fingers Fingers Fingers

G1 100% 0% 0 % 0%
G2 90% 0% 10 % 5%
G3 100% 0% 0 % 0%
G4 94% 2% 2 % 3%
G5 95% 4% 0 % 1%
G6 92% 0% 8 % 4%
G7 94% 1% 2 % 3%
G8 100% 0% 0 % 0%
G9 98% 2% 0 % 0%

G10 96% 1% 2 % 2%
G11 95% 0% 4 % 1%
G12 100% 0% 0 % 0%
G13 91% 1% 8 % 4%
G14 100% 0% 0 % 0%
G15 100% 0% 0 % 0%
G16 97% 0% 2 % 1%

AVERAGE 96.4% 0.7% 2.4% 1.5%

TABLE I: Accuracy of the proposed approach in terms of
percentage of correctly recognized fingers.

Eq. (2) and Eq. (4) are easily parallelizable. The integer
programming part can be done in real-time: on a 2.5GHz
i5 CPU, a solution was found on average within 14 ms. The
current implementation is not optimized and exploits Mat-
lab code for some steps but an optimized C++ application
will be able to do all the processing in real-time.

V. CONCLUSIONS

An efficient approach for the recognition of the palm
and fingers from a single depth map without exploiting
temporal constraints has been proposed. The palm and
fingers regions are discriminated by contracting the 3D
point cloud along the normal directions and analyzing the
changes in the points density due to this process. This
allows to recognize also fingers bent over the palm, a
quite critical issue for many silhouette and shape-based
approaches. Density-based clustering is then used to per-
form an over-segmentation of the fingers regions and fi-
nally the segments are associated to the various fingers
by an integer linear programming approach. Experimental
results demonstrate the effectiveness of the approach on a
challenging dataset containing complex gestures with inter-
occlusions and fingers bent over the palm and over other



fingers. Notice how after recognizing the various fingers it
is much simpler to estimate the hand pose by associating the
fingers depth samples to the hand skeleton. Further research
will be devoted to the exploitation of the proposed approach
for hand pose estimation.

REFERENCES

[1] A. Erol, G. Bebis, M. Nicolescu, R. Boyle, and X. Twombly, “Vision-
based hand pose estimation: A review,” Computer Vision and Image
Understanding, vol. 108, no. 12, pp. 52 – 73, 2007.

[2] C. Dal Mutto, P. Zanuttigh, and G. M. Cortelazzo, Time-of-Flight
Cameras and Microsoft Kinect, ser. SpringerBriefs in Electrical and
Computer Engineering. Springer, 2012.

[3] C. Keskin, F. Kıraç, Y. E. Kara, and L. Akarun, “Real time hand
pose estimation using depth sensors,” in Consumer Depth Cameras
for Computer Vision. Springer, 2013, pp. 119–137.

[4] D. Tang, H. Chang, A. Tejani, and T. Kim, “Latent regression forest:
Structured estimation of 3d articulated hand posture,” in Proceedings
of CVPR, 2014.

[5] J. Taylor, R. Stebbing, V. Ramakrishna, C. Keskin, J. Shotton,
S. Izadi, A. Hertzmann, and A. Fitzgibbon, “User-specific hand
modeling from monocular depth sequences,” Proc. of CVPR, 2014.

[6] C. Qian, X. Sun, Y. Wei, X. Tang, and J. Sun, “Realtime and robust
hand tracking from depth,” in Proceedings of CVPR, 2014.

[7] I. Oikonomidis, M. Lourakis, and A. Argyros, “Evolutionary quasi-
random search for hand articulations tracking,” in Proc. of CVPR,
2014.

[8] J. Tompson, M. Stein, Y. Lecun, and K. Perlin, “Real-time contin-
uous pose recovery of human hands using convolutional networks,”
ACM Trans. Graph., vol. 33, no. 5, pp. 169:1–169:10, 2014.

[9] N. Neverova, C. Wolf, G. W. Taylor, and F. Nebout, “Hand segmen-
tation with structured convolutional learning,” in The 12th Asian
Conference on Computer Vision (ACCV), 2014.

[10] D. Tang, T. Yu, and T. Kim, “Real-time articulated hand pose
estimation using semi-supervised transductive regression forests,” in
Proc. of ICCV, 2013.

[11] F. Dominio, M. Donadeo, G. Marin, P. Zanuttigh, and G. Cortelazzo,
“Hand gesture recognition with depth data,” in Proceedings of the
4th ACM/IEEE ARTEMIS workshop. ACM, 2013, pp. 9–16.

[12] F. Dominio, M. Donadeo, and P. Zanuttigh, “Combining multi-
ple depth-based descriptors for hand gesture recognition,” Pattern
Recognition Letters, pp. 101–111, 2014.

[13] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Proceedings of ICCV, 1998, pp. 839–846.

[14] Z. Ren, J. Yuan, C. Li, and W. Liu, “Minimum near-convex decom-
position for robust shape representation,” in Proceedings of ICCV,
2011, pp. 303–310.

[15] M. Fischler and R. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–
395, 1981.

[16] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in Proc. of KDD. AAAI Press, 1996, pp. 226–231.


