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Abstract—Depth data acquired by consumer depth cameras
provide a very informative description of the hand pose
that can be exploited for accurate gesture recognition. A
typical hand gesture recognition pipeline requires to identify
the hand, extract some relevant features and exploit a suit-
able machine learning technique to recognize the performed
gesture. This chapter deals with the recognition of static
poses. It starts by describing how the hand can be extracted
from the scene exploiting depth and color data. Then several
different features that can be extracted from the depth data
are presented. Finally a multi-class SVM classifier is applied
to the presented features in order to evaluate the performance
of the various descriptors.

I. INTRODUCTION

Hand gesture recognition is an intriguing problem for
which many different approaches exist. Even if gloves
and various wearable devices have been used in the past,
vision-based methods able to capture the hand gestures
without requiring to wear any physical device allow a
more natural interaction with computers and many other
devices. This problem is currently raising a high interest
due to the rapid growth of application fields where it can
be efficiently applied, as reported in recent surveys (e.g.
[1], [2]). However hand gesture recognition from images
or video data is a very challenging task. The hand and
fingers can assume a huge variety of poses and there are
often several inter-occlusions between the various fingers.
Furthermore the skin has a relatively uniform color that
does not help feature extraction and recognition schemes.
For all these reasons it is difficult to recognize complex
gestures from the 2D representation given by a single image
or from a video.

The introduction of Microsoft’s Kinect sensor has made
the acquisition of 3D information available to the mass
marker, thus paving the way for new solutions for many
challenging computer vision problems, including object
tracking and recognition, human activity analysis, indoor
3D mapping and also hand gesture recognition. A complete
review of them is presented in [3]. In the computer gam-
ing field, Microsoft’s Kinect has already brought gesture
interfaces to the mass market, but many new application
fields are being considered. These include human-computer
interaction, 3D navigation, robotics, gaming, sign-language
recognition, vehicle control and many others. Hand gestures
can be used to replace the mouse in computer interfaces
and to allow a more natural interaction with mobile devices

like smartphones and tablets, but also with newer wearable
devices like the Google glasses and other similar tools.
Besides controlling standard 2D interfaces, a very interest-
ing field is the interaction with 3D virtual environments,
that is much more natural if gestures performed in the
3D space are used. Another key application is automatic
sign-language interpretation, that would allow hearing and
speech impaired people to interact with computers and
other electronic devices. Finally, the healthcare field is
another field in which hand gesture recognition can be used
for a more natural control of diagnostic data and surgical
devices.

Depth data intrinsically contains a very informative three-
dimensional description of the hand pose, which can be
exploited for gesture recognition. The simplest approaches
just use depth data to reliably extract the hand silhouette.
This allows to directly apply many methods derived from
color-based hand gesture recognition, but only exploits a
limited amount of the information contained in depth data.
This chapter shows how several features based on the three-
dimensional data in the depth map, representing the hand
shape and the finger posture, can be extracted and used to
properly recognize complex gestures.

In order to show how depth data can be used in hand
gesture recognition, it is assumed that a generic hand
gesture recognition scheme encompasses three main steps:

• Hand extraction
• Feature extraction
• Gesture classification

The chapter follows this subdivision and the following
sections describe the three main steps. Section III explains
how the hand can be recognized both from depth and color
data, by also considering its segmentation into arm, palm
and fingers regions. Then the extraction of feature descrip-
tors is analyzed in detail in Section IV. Several different
possible descriptors are presented, including 3D distances
from the palm center or from the palm plane, descriptors
based on the contour of the hand (e.g., curvature features
or approaches based on the perimeter length), convex hull
based features, and other schemes. In order to compare the
efficiency of the various features, a classification scheme
based on Support Vector Machines (SVM) is presented in
Section V and the obtained accuracies from a real dataset
are reported in Section VI. Finally, Section VII draws the



conclusions.

II. RELATED WORK

Hand gesture recognition has been the subject of a large
amount of research activity. Until a few years ago, computer
vision approaches were only based on the images or videos
framing the hand. These methods typically exploit the
shape of the hand silhouette, color or motion information
to extract relevant features to be used for the gesture
recognition. A complete overview of these approaches is
out of the scope of this chapter, which focuses on depth
information. Complete reviews of this field can be found
in [1] and in [4].

The recent availability of consumer depth cameras based
on structured light, like the Kinect or the Asus Xtion,
and of matricial Time-Of-Flight sensors, e.g., the Creative
SENZ3D or Mesa’s Swiss Ranger, has opened the way to
a new family of approaches exploiting depth information.
Depth data offer an accurate description of the hand pose
and compared to images and videos there are several
advantages. They include the possibility of capturing the
3D orientation of the hand parts, the availability of metric
measures in the 3D space and much simpler options for the
hand segmentation.

The basic pipeline of most methods consists in the three
steps indicated in Section I. Hand segmentation is typically
solved by a simple thresholding of the depth data [5], [6].
A common assumption used in this step is that the hand is
the closest object to the sensor. After extracting the samples
corresponding to the hand only, several different methods
may be used for the following steps. A first family of
approaches is based on the hand silhouette extracted from
the depth data: in [7] silhouette and cell occupancy features
are extracted from the depth map and used for building a
shape descriptor that is then fed into a classifier based on
action graphs. Histograms of the distance of the hand points
from its center, extracted from the silhouette, are used in [6]
and [8]. Other approaches in this family use features based
on the convex hull and on the fingertips positions computed
from the silhouette, as in [9] and [10]. The convex hull is
also exploited in the open source library XKin [11], [12].

Another possibility is computing descriptors based on
the volume occupied by the hand. In [13], 3D volumetric
shape descriptors are extracted from the depth map and fed
into a Support Vector Machine (SVM) classifier. A similar
approach is exploited by [14].

Color data can also be used together with the depth data,
as in [15], that is based on Randomized Decision Forests
(RDFs). RDFs are also used by Keskin et Al [16].

All these approaches are focused on the recognition of
static poses, other methods, instead, deal with dynamic
gestures. For example, [17] exploits motion information,
and in particular the trajectory of the hand centroid in the
3D space, for recognizing dynamic gestures. Depth and
color information are used together in [18] to extract the
trajectory that is then fed to a Dynamic Time Warping

(DTW) algorithm. Finally, Wan et Al [19] exploit both the
convex hull on a single frame and the trajectory of the
gesture.

Among the various application of hand gesture recogni-
tion, sign language recognition is one of the most interest-
ing. An approach for sign language recognition with the
Kinect is proposed in [20].

A different but related problem is the extraction of the
3D hand pose, which can then be exploited for gesture
recognition. Approaches exploiting depth data for this task
are [21], [22] and [23].

III. HAND EXTRACTION

The first step of the considered gesture recognition
pipeline, indicated in Section I, consists in segmenting the
hand from the rest of the scene, since all the information
of the performed gesture is entirely contained in the hand
region. The region of the arm is usually discarded, as it
does not contain any helpful information about a particular
gesture and its shape and size are affected by the presence
of sleeves and bracelets. Hand extraction is a crucial step
because all the following processing is performed on the
segmented region only.

Different methods have been used over the years to tackle
this problem, exploiting different clues like appearance,
shape, color, depth, context, and tracking. In order to take
advantage of both the color and the depth map from the
sensor, a joint calibration of color and depth camera [24]
is required. Joint calibration, in fact, allows to associate a
color and a depth value to each point in the framed scene .

The most common methods based on appearance exploit
cascade classifiers based on Haar-like features [25]. How-
ever, differently from faces, which have fixed properties
related to the position of the mouth, eyes and nose, hands
have many degrees of freedom, and so this technique does
not produce satisfactory results.

A common scenario is to have users facing the camera
with their hand held in front of themselves. This allows to
assume that the hand is the closest object to the sensor.
In this case, a simple threshold in depth range can be
used to isolate the hand. Additional geometric constraints
in the hand aspect ratio and size may be used to refine
the segmentation, as in [26]. Other approaches exploiting
only the depth map, use clustering algorithms such as K-
means, iterative seed fill or region growing to separate the
hand region from the rest of the scene. In [27], the depth
range is fixed and a flood fill algorithm is used to cluster
contiguous points with the aim of separate the hand from
the body. In [10] instead, the K-means algorithm with 2
clusters is used in a limited depth range to find the hands.

The assumption that the hand has to be the closest
object in the scene can be relaxed by predicting hand depth
according to the position of other body parts, such as the
face. In addition, since the color image is available as well,
skin color segmentation can be used to enforce the hand
detection. In [28], skin color segmentation based on both



a model trained offline and a further online histogram-
based refinement are used to get an initial guess for hand
detection. Then, the user face is detected and all the points
not belonging to a predefined region in front of the face are
rejected. Once the hand is detected, the arm is removed by
exploiting the depth and other geometrical constraints.

Color data can be combined with the depth in order to
improve the accuracy and better segment the hand from
the arm, as in [29]. Other approaches also exploit some
physical aids, e.g. in [6], after thresholding the depth map,
a black bracelet on the gesturing hand’s wrist is recognized
in the color image for an accurate hand detection.

More reliable approaches exploit the temporal redun-
dancy to better find and segment the hand, reducing false
positive detection. For example, [7] first divide depth map
into a number of blobs using a connected-component la-
beling algorithm, then, for the biggest blob that is assumed
to include the body and the hand, compute blob tracking,
the blob with the highest track is associated to the hand.
Additional geometric constraints are used to identify and
remove points of the wrist region.

Once the hand has been extracted, it is also necessary
to estimate its position and orientation to ensure that the
recognition is rotational and scale invariant. Scale invari-
ance can be easily obtained since, if calibration data are
available, depth provide metric measures in the 3D space.
The orientation can be computed by detecting the principal
direction, e.g. with Principal Component Analysis (PCA)
or by fitting a plane on the hand point cloud.

An example of efficient hand segmentation scheme that
exploits both color and depth information is presented
in [30] and is briefly recalled here. This approach also
allows to extract useful information for features extraction
that will be exploited in the next section. The acquired
depth map D(u, v) is firstly thresholded on the basis of
color information. More specifically, the colors associated
to the samples are converted into the CIELAB color space
and compared with a reference skin color that has been
previously acquired, e.g. from the face by using a standard
face detector [25]. After the skin color thresholding, the
hand region has a higher chance to be the nearest object to
the camera.

Let Xi = Xu,v denote a generic 3D point acquired
by the depth camera, that is, the back-projection of the
depth sample in position (u, v). A search for the sample
with the minimum depth value Dmin on the thresholded
depth map, avoiding isolated artifact, is performed and the
corresponding point Xmin is chosen as the starting point
for the hand detection procedure. Points belonging to the
hand samples setH are the ones whose distance from Xmin

does not exceed a predefined threshold Tmax:

H = {Xi| ||Xi −Xmin|| < Tmax} (1)

This algorithm allows to reliably segment the hand samples
from the scene objects and from the other body parts. An
example of a thresholded depth map obtained with this

approach is shown in Fig. 1c.
In order to extract some of the feature sets described in

Section IV, it is first necessary to obtain some additional
information such as the hand orientation, its centroid, the
palm and fingers regions. A possible approach is to consider
the binary mask of the hand samples in the depth image
and filter it with a Gaussian kernel obtaining a result
similar to the one in Fig. 1d. The resulting blurred image
represents the hand samples density, where the luminance
is directly proportional to the points density, and the point
with the maximum intensity (that is, the one representing
the maximum density) is chosen as initial value of the palm
center. This value can then be refined by fitting a circle or an
ellipse [31] whose center and size are updated iteratively by
ensuring that most of the points belong to the hand samples.
When the process converges, the points of the hand within
the fitted shape will give an estimate of the palm region,
while the 3D point corresponding to the center of the fitted
shape will be the centroid C of the hand. Note that the
centroid plays an important role in the features extraction,
as most of them strongly depend from the centroid position.
At this point, the hand regionH can be segmented into three
regions:

• P containing points corresponding to the hand palm.
• W containing the points of H lying on the sub-space

below P . Such samples typically belong to the wrist
and forearm and are not considered in most gesture
recognition schemes.

• F containing the points of H − P − W , which
corresponds to the fingers region.

It is useful also to define the set He = P + F containing
the points of the palm and the fingers, and its projection B
on the binary mask.

Once all the possible palm samples have been detected,
a 3D plane π can be fitted on them by using SVD
and RANSAC to get its position in 3D space. Principal
Component Analysis (PCA) can be applied, instead, to the
3D points inH in order to extract the main axis that roughly
corresponds to the direction ix of the vector going from the
wrist to the fingertips.

In order to build a 3D coordinate system centered on
the palm centroid projected on π, i.e. Cπ , the axis ix is
projected on plane π obtaining iπx , then iπz is the normal to
plane π, and the remaining axis iπy is obtained by the cross-
product of iπz and iπx thus forming a right-handed reference
system (iπx , i

π
y , i

π
z ), as depicted in Fig. 1g.

Finally, the information on the hand orientation and the
palm radius can be used to remove all the wrist samples.
Let R be the estimated palm radius and Xπ

i = (xπi , y
π
i , z

π
i )

the coordinates of an hand sample Xi with respect to the
palm 3D coordinate system: it is possible to assume that
Xπ
i belongs to the wrist whenever xπi < −R (recall that

the x axis points form the palm center to the fingertips as
shown in Fig.1g).
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Fig. 1: Extraction of the hand and palm samples: a)
Acquired color image; b) Acquired depth map; c) Extracted
hand samples (the closest sample is depicted in green);
d) Output of the Gaussian filter applied on the mask
corresponding to H with the maximum in red; e) Circle
fitted on the sample gesture; f) Palm (blue), finger (red)
and wrist (green) regions subdivision; g) Reference system
(iπx , i

π
y , i

π
z ).

IV. EXTRACTION OF THE RELEVANT FEATURES

The next step consists in extracting feature sets from the
segmented hand data which will be used for the classifica-
tion of the performed gestures. Several different types of
features have been proposed in the literature, as shown in
Section II, based on both color and depth data. This section
focuses on the information that can be extracted from depth
data and presents a set of possible features to be used for
reliable gesture recognition. The considered features are:

• Distance features: describe the Euclidean 3D dis-
tances of the fingertips from the estimated palm center.

• Elevation features: account for the Euclidean dis-
tances of the fingertips from a plane fitted on the palm
samples. Such distances may also be considered as the
elevations of the fingers with respect to the palm.

• Contour histogram similarity features: account for
the similarity between the contour points distances in
the performed gesture and in the reference acquisitions
of the various gestures.

• Curvature features: describe the curvature of the
contour of the palm and fingers regions.

• Palm area features: describe the shape of the palm
region and helps to state whether each finger is raised

or bent on the palm.
• Convex hull features: various feature can be extracted

from the convex hull of the hand shape in the depth
map. They include the ratios between the area or the
perimeter of the hand shape to the one of its convex
hull and the number of vertexes in the convex hull.

• Connected components features: they are based on
the connected components in the difference between
the hand shape and its convex hull. The dimensions
and the number of the connected components can be
used as features.

A. Distance features

The computation of this feature set starts from the
construction of an histogram representing the distance of
the edge samples in F from the hand centroid Cπ . Here a
brief description of the approach of [30] and [29], that in
turn extends the scheme of [6], is given.

Let R be the 3D radius of the circle back-projected to
the plane π, if the more accurate fitting model with the
ellipse is employed, R represents the distance from Cπ to
the edge of the ellipse and is not a constant value. For
each 3D point Xi ∈ F , the normalized distance from the
centroid dXi

= ‖Xi−Cπ‖−R and the angle θXi
between

vector Xπ
i −Cπ and axis iπx on the palm plane π (where

Xπ
i is the projection of Xi on π) are computed. Then θ is

quantized with a uniform quantization step ∆ into a discrete
set of values θq . Each θq thus corresponds to an angular
sector I(θq) = θq − ∆

2 < θ ≤ θq + ∆
2 , and the farthest

point inside each sector I(θq) is selected thus producing a
histogram L(θ):

L(θq) = max
I(θq)

dXi
(2)

For each gesture in the dataset, a reference histogram Lrg(θ)
of the type shown in Fig. 2 is built. A set of angular regions
corresponding to the raised fingers intervals in each gesture
(shown in Fig. 2) is also defined and will be used for
computing the features.

The hand direction estimated by means of the PCA main
axes is not very precise and furthermore is affected by
several issues, e.g. the number of raised fingers in the per-
formed gesture and the size of the retained wrist region after
hand detection. The generated distance histogram therefore
may not be aligned with the gesture templates, and a direct
comparison of the histograms in this case is not possible.
In order to compare the performed gesture histogram with
each gesture template, they are firstly aligned by looking
for the argument maximizing the cross-correlation between
the acquired histogram and the translated version of the
reference histogram of each gesture1. The possibility of
flipping the histogram to account for the fact that the hand
could have either the palm or the dorsum facing the camera

1In Equations (3) and (4) L is considered as a periodic function with
period 2π.



is also considered, by evaluating:

∆g = argmax
∆

(
ρ
(
L(θ), Lrg(θ + ∆)

))
∆rev
g = argmax

∆

(
ρ
(
L(−θ), Lrg(θ + ∆)

)) (3)

where symbol ρ(a(·), b(·)) denotes the value of the cross
correlation between a(·) and b(·). The translational shift ∆
that gives the maximum of the correlation of either L(θ) or
L(−θ) in (3) is used to align the acquired histogram with
the reference histograms of each gesture. Let Lg(θ) denote
the histogram aligned to the gesture reference histogram
Lrg(θ). The translational shift to be applied to L(θ) will be
either ∆g and ∆rev

g depending on the one maximizing the
correlation, i.e. Lg(θ) is defined as:

Lg(θ) =


L(θ −∆g) if ρ

(
L(θ), Lrg(θ + ∆g)

)
≥

ρ
(
L(−θ), Lrg(θ + ∆rev

g )
)

L(−θ −∆rev
g ) otherwise

(4)

Note that there can be a different alignment ∆g for each
gesture, and that different regions can be defined in each
gesture reference histogram corresponding to the various
features of interest. This approach basically compensates
for the limited accuracy of the direction computed by the
PCA.

The alignment procedure solves one of the main issues
related to the direct application of the approach of [6]. Fig.
3 shows some examples of the computed histograms for
three different gestures. Note that the fingers raised in the
various gestures are clearly visible from the plots.
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Fig. 2: Histogram of the edge distances with the corre-
sponding feature regions: a) finger edges F ; b) associated
histogram L(θ) with the regions corresponding to the
different features f lg,j (feature points highlighted with red
stars).

If the database has G different gestures to be recognized,
the feature set contains a value for each finger j ∈ {1, .., 5}
in each gesture g ∈ {1, .., G}. The feature value f lg,j
associated to finger j in gesture g corresponds to the
maximum of the aligned histogram within the angular
region I(θg,j) = θming,j < θ < θmaxg,j associated to finger
j in gesture g (see Fig. 2), i.e. :

f lg,j =

max
I(θg,j)

Lg(θ)

Lmax
(5)

All the features are normalized by the length Lmax of the

Gesture Rep. 1 Rep. 2 Rep. 3
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Fig. 3: Examples of aligned distance histogram Lg(θ) for
3 sample frames corresponding to different gestures.

middle finger in order to scale them within range [0, 1]
and to account for the fact that hands of different people
have different sizes. Note that there can be up to G × 5
features, though their actual number is smaller since not all
the fingers are raised in each gesture. The distance features
are collected into feature vector Fl.

B. Elevation features

The construction of the elevation features is analogous to
the one employed for the distance features of Section IV-A.
The process starts by building an histogram representing
the distance of each sample in F from the palm plane π,
namely, for each sample Xi in F its distance from plane
π is computed:

eXi = sgn
(
(Xi −Xπ

i ) · iπy
)
|Xi −Xπ

i | (6)

where Xπ
i is the projection of Xi on π. The sign of eXi

accounts for the fact that Xi can belong to any of the two
semi-spaces defined by π, that is, Xi can either be on the
front or behind π.

Now, as for the distance features, for each angular sector
corresponding to a θq , the point with greatest absolute
distance from the plane is selected, thus producing an
histogram:

E(θq) =


max
I(θq)

eXi if
∣∣∣∣max
I(θq)

eXi

∣∣∣∣ > ∣∣∣∣min
I(θq)

eXi

∣∣∣∣
min
I(θq)

eXi
otherwise

(7)

Note that E(θq) uses the same regions computed in Section
IV-A. The histogram E(θ) corresponding to the performed
gesture is then aligned to the various reference gestures
in G using the alignment information already computed in
Section IV-A. Let Eg(θ) be the histogram E(θ) aligned
with the template gesture g. The elevation features are then



computed according to:

feg,j =



1

Lmax
max
I(θg,j)

Eg(θ) if
∣∣∣∣ max
I(θg,j)

Eg(θ)

∣∣∣∣ >∣∣∣∣ min
I(θg,j)

Eg(θ)

∣∣∣∣
1

Lmax
min
I(θg,j)

Eg(θ) otherwise

(8)

Note that the vector Fe of the elevation features has the
same structure and number of elements of the vector Fl of
the distance features.

C. Contour histogram similarity features

This feature set is based on the similarity between dis-
tance histograms of subsection IV-A. For each considered
gesture, a reference acquisition is selected and the corre-
sponding distance histogram is computed with the approach
of Eq. 2, thus obtaining a set of reference histograms Lrg(θ),
where g is the considered gesture. The distance histogram
of the acquired gesture L(θq) is also computed and the
maximum of the correlation between the current histogram
L(θq) and a shifted version of the reference histogram
Lrg(θ) is selected:

Rg = max∆

[
ρ
(
L(θ), Lrg(θ + ∆)

)
, ρ
(
L(−θ), Lrg(θ + ∆)

)]
(9)

where g = 1, ..., G. Note how the flipped histogram is also
considered for the reasons already outlined in section IV-A.
The computation is performed for each of the candidate
gesture, thus obtaining a set Fρ containing a different
feature value fρg for each of them. As expected, ideally the
correlation with the correct gesture should have a larger
value than the other features.

An important aspect of this feature extraction method is
the employed similarity metric, which strongly affects the
results. A reasonable high accuracy can be obtained through
the zero-mean normalized cross-correlation (ZNCC) be-
tween the histograms, since this measure is less affected
by the different sizes of different hands. On the other
side, this measure is sometimes not able to discriminate
two histograms with a similar outline corresponding to
different fingers, e.g. an histogram representing a gesture
with a raised index only, may have an high correlation
value with an histogram representing a gesture with a raised
little only. This ambiguity can be often removed by using
alternative similarity measurement values in place of or
together with the ZNCC. A good alternative is the sum
of squared differences (SSD) between the two histograms.
The features obtained with this measure will be denoted
with FSSD.

D. Curvature features

The third proposed descriptor is based on the curvature of
the hand shape edges. Since depth data coming from real-
time depth cameras are usually rather noisy, a reasonable

assumption is to avoid differential operators for curvature
description, relying instead on integral invariants [32], [33].

The curvature feature extractor algorithm takes as input
the hand edge points He and the binary mask B(u, v). Let
Hc = ∂He be the boundary of He, namely the subset of
all the points Xi ∈ He belonging to the hand contour only.
Consider a set of S circular masks Ms(Xi), s = 1, .., S
with radius rs centered on each edge sample Xi ∈ Hc
(reasonable numbers are 25 masks with rs varying from
0.5cm to 5cm).

Let V (Xi, s) denote the curvature in Xi, expressed as
the ratio of the number of samples of He falling in the
mask Ms(Xi) over Ms(Xi) size, namely:

V (Xi, s) =

∑
Xi∈Ms(Xi)

B(Xi)

|Ms(Xi)|
(10)

where |Ms(Xi)| denotes the cardinality of Ms(Xi) and
B(Xi) = B(uj , vj), with (uj , vj) be the 2D coordinates
corresponding to Xi. Note that V (Xi, s) is computed for
each sample Xi ∈ Hc. The value s corresponds to the scale
level at which feature extraction is performed. Differently
from [33] and other approaches, the radius rs is defined in
metrical units and is then converted to the corresponding
pixel size on the basis of the distance between the camera
and the hand. In this way the descriptor is invariant with
respect to the distance between the hand and the camera.

For faster processing, the circular masks can be replaced
with simpler square masks and then integral images can
be used for fast computation of the samples in the mask.
This approach, even if not perfectly rotation invariant,
proved to be significantly faster and the performance loss
is negligible.

The values of V (Xi, s) range from 0 (extremely convex
shape) to 1 (extremely concave shape), with V (Xi, s) =
0.5 corresponding to a straight edge. The [0, 1] interval is
quantized into N bins of equal size b1, .., bN . The set Vb,s
of the finger edge points Xi ∈ Hc with the corresponding
value of V (Xi, s) falling to bin b for the mask s is
expressed as:

Vb,s = {Xi|
(b− 1)

B
< V (Xi, s) ≤

b

B
} (11)

For each radius value s and for each bin b the chosen
curvature feature, denoted by f cb,s, is the cardinality of the
set V (Xi, s) normalized by the contour length |Hc|:

f cb,s =
|Vb,s|
|Hc|

(12)

Note that, because of the normalization, the curvature
feature f cb,s only takes values in [0, 1], which is the same
interval shared by both the distances and elevations feature.
Finally, all the curvature features f cb,s are collected within a
feature vector Fc with B×S entries, ordered by increasing
values of indexes s = 1, 2, ...S and b = 1, 2, ..., N . By
resizing Fc into a matrix with S rows and N columns,
and by considering each f cb,s as the value of the pixel with



coordinates (b, s) in a grayscale image, it is possible to
graphically visualize the overall curvature descriptor Fc as
exemplified in Fig. 4.
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Fig. 4: Examples of curvature descriptors for 3 sample
frames from different gestures.

E. Palm area features

Palm area set of features describes the displacement of
the samples in the palm region P . Note that P corresponds
to the palm area, but it may also include finger samples
if some fingers are folded over the palm. The idea is to
subdivide the palm region into six different areas, defined
over the plane π, as shown in Fig. 5. The circle or ellipse
defining the palm area is divided into two parts: the lower
half is used as a reference for the palm position, and a
3D plane πp is firstly fitted to this region. The upper
half is divided into 5 regions Aj , j = 1, .., 5 roughly
corresponding to the regions close to the different fingers as
shown in Fig. 5, that is, each region corresponds to the area
that is affected by the position of a finger. Note how the
feature values account for the deformation the palm shape
undergoes in the corresponding area when the related finger
is folded or is moved. In particular, it is worth noting that
the samples corresponding to the fingers folded over the
palm are associated to P and are not captured by distance
or elevation features, but they are used for the computation
of palm area features. The areas positions on the plane
strictly depend on the parameters defining the palm area
(i.e. the center Cπ and the radius R of the circle or the
two axes of the ellipse), on the fingers width and on the
direction iπx corresponding to θ = 0. The alignment of
the θ directions can be computed as in Section IV-A, thus
obtaining an alignment for each gesture template. The areas
aligned with the template of each gesture will be denoted
with Agj , where g indicates the corresponding gesture. In
this way the set of points Xi in P associated to each of the
regions Agj is computed. Then, each area Agj is considered
and the distance between each sample Xi in Agj and πp is
computed. The average of the distances of the samples of

the area Agj :

fag,j =

∑
Xi∈Ag

j
‖Xi −Xπ

i ‖
|Agj |

(13)

is taken as the feature corresponding to the area Agj . All the
area features are collected within vector Fa, made by G×5
area features, one for each finger in each possible gesture.
The entries of Fa are finally scaled in order to assume
values within range [0, 1], as the other feature vectors.

Fig. 5: Regions corresponding to the various area features
shown over a sample gesture.

F. Convex hull features

The convex hull of the 2D hand shape in the depth map
is another source of information that can be exploited for
the construction of descriptors of the hand pose [11]. Given
the set of points on the hand mask B, the corresponding
convex hull is computed. Due to the noise of the sensors,
the set of vertexes may contains some artifacts that should
be removed before exploiting it for gesture recognition:

1) The hand shape can contain some small holes due to
noise that must be removed

2) There can be close vertexes due to the irregular shape
of the acquired hand contour (see Fig. 6a). The length
of the convex hull edges is computed and in case
there were edges shorter than a pre-defined threshold
they must be removed and the corresponding vertexes
collapsed into a single point (Fig. 6b).

3) Also the presence of angles close to 180◦ (i.e. two
subsequent edges are almost on the same line) is an
hint of extra edges due to acquisition artifacts. In this
case the vertex is removed as well and the two edges
are combined into a single one, as shown in Fig. 6c.

In this way a simplified convex hull Chull(B) with vertexes
Pchull can be built.

1) Convex hull vertexes: A first possible feature is the
number of vertexes of the convex hull F pch = |Pchull|.
This value is an hint of the hand pose and in particular of
the number of raised fingers. Note how, ideally, the desired
convex hull presents a vertex for each fingertip and a few
other vertexes delimiting the palm area. These vertexes,
together with the distances histograms computed in Sec-
tion IV-A, may also aid the fingertips position estimation:
assuming that, for each histogram value the related 3D point
is known, since the histogram local maxima correspond



a) b) c)

Fig. 6: Computation of the vertexes of the convex hull: a)
Convex hull of B(u, v); b) Convex hull after the removal
of short edges; c) Convex hull after the removal of short
edges and of wide angles.

to the hand shape boundary (which contains the fingertips
as well), by pairing the convex hull vertexes with them
it is possible to detect which local maxima are likely to
be associated to fingertips and which ones, instead, are
probably due to noise or associated to the palm edges.

2) Convex hull area ratio: Another good feature is the
ratio between the area of the hand shape and the area of
the convex hull enclosing it, that is:

F ch =
|B|

area(Chull(B))
(14)

3) Convex hull perimeter ratio: The ratio between the
perimeter of the hand shape and the perimeter of the convex
hull:

FRp =
perimeter(B)

perimeter(Chull(B))
(15)

is another useful clue. Gestures with bended fingers typi-
cally correspond to perimeter ratios close to 1 while when
several fingers are pointing out of the hand this ratio is
usually smaller. Fig. 7 shows a couple of examples; note
how in the first case the two perimeters are quite different,
while in the single finger gesture of the second row the two
perimeters are more similar.

G. Connected components features

One of the other relevant clues that can be extracted from
the comparison between the convex hull and the hand shape
is the shape of the regions within the convex hull region but
not belonging to the hand. These typically correspond to the
empty regions between the fingers and are a good indicator
of the fingers arrangement. Let S = Chull(B) − B be the
difference between the convex hull and the hand shape. An
example of the region S is shown in Fig. 8a. The region
S is typically made of a set of connected components. The
various connected components Si are extracted and then the
ones that are smaller than a threshold Tcc are discarded in
order to avoid considering small components due to noise
(e.g. the region on the right in the second row of Fig. 8).
In this way the set S = {Si : Si > Tcc} is built as shown
in Fig. 8b.

A first feature that can be extracted from this process
is the number of connected components Ncc = |S| bigger

a) b)

Fig. 7: Perimeter of the hand contour and of the convex
hull; a): convex hull perimeter. b) hand perimeter.

a) b)

Fig. 8: Area of the connected components. a) Connected
components in set S; b) Connected components in set S
highlighted in green.

than the threshold. Another feature set is, instead, given by
the ratio of the areas of the various connected components
with the convex hull area, that is:

f cci =
area(Si|Si ∈ S)

area(Chull(B)))
(16)

where the areas are sorted according to the angle of their
centroid with the axes computed by the PCA (i.e. from the
thumb to the little).

V. GESTURE CLASSIFICATION WITH SUPPORT VECTOR
MACHINES

The third and last step of the Section I pipeline consists
in applying an appropriate machine learning technique to
classify the features extracted in Section IV, in order to



recognize the performed gestures. Approaches based on
Support Vector Machines, Randomized Decision Forests,
Neural Networks and many others have been proposed in
literature. Presenting the various machine learning methods
is beyond the scopes of this chapter that focuses on feature
extraction, although the classification with Support Vector
Machines (SVM) is here briefly recalled only for clarity
sake and used to compare the efficiency of the various
features.

The feature extraction approaches of Section IV provide
different feature vectors describing relevant properties of
the hand samples. Let F denote a suitable feature vector
describing the performed gesture, e.g. F = Fl for distance
features. The gesture recognition problem consists in classi-
fying the vectors F into G different classes corresponding
to the considered gestures. A multi-class SVM classifier
based on the one-against-one approach can be used, and
corresponds to a set of G(G−1)/2 binary SVM classifiers
used to test each class (i.e., gesture) against each other.
Each classification output is chosen as a vote for a certain
gesture and the gesture with the maximum number of votes
is the result of the recognition process. Different kernels
can be used for the SVM, but the most common choice
is the non-linear Gaussian Radial Basis Function (RBF)
kernel. In order to set the classifier parameters, a training set
containing data from N users is assumed to be available. A
naive grid search with cross-validation approach is viable,
although not efficient: the space of parameters (C, γ) of the
RBF kernel is subdivided with a regular grid and for each
couple of parameters the training set is divided into two
parts, one containing N−1 users for training and the other
with the remaining user for validation. The performances
are evaluated and the procedure is repeated by changing
each time the user used for the validation. The couple of
parameters that give the best accuracy on average is finally
selected. The SVM can then be trained on all the N users
of the training set with the optimal parameters.

This approach can also be used to perform the recogni-
tion with multiple feature descriptors together. The simplest
solution is to concatenate into vector F the different feature
vectors of the descriptors that are going to be used. E.g.
to combine distance, elevation and curvature descriptors a
combined feature vector F = [Fl,Fe,Fc] can be fed to the
SVM classifier. More refined combination schemes can be
exploited, e.g. as in [34].

VI. EXPERIMENTAL RESULTS

This chapter analyzes the classification performances of
the various feature descriptor described in Section IV. The
experiments were performed on a gesture dataset acquired
in the Multimedia Technology and Telecommunications
Lab of the University of Padova. Such dataset is a sub-set of
the American Manual Alphabet, and contains 10 repetitions
of 12 different gestures performed by 14 different people.
A representative picture for each gesture is shown in Fig.
9 while the complete dataset is made available at the

url http://lttm.dei.unipd.it/paper data/gesture, and provides
both the RGB image and the depth map for all the frames.

For each gesture, one of the repetitions in the training set
was used for the computation of the reference histogram of
Eq. (3), required for the extraction of distances, elevations,
correlations and contour histogram similarity features.

The classification model was computed through the SVM
implementation provided by the OpenCV library exploiting
a variation, tailored for the particular data nature, of the
grid-search approach described in Section V. Differently
from the classic grid-search method, which performs ran-
dom subsamplings of the feature vectors for splitting the
dataset in a train and a test set, or use a leave-one-
out approach, the method employed for the experiments
relies on an extension of the leave-one-out which may be
named as leave-one person-out. Namely, all the feature
vectors referred to a specific person belong either to the
test or the train set of the current dataset split. Fig. 10
exemplifies the leave-one person-out approach employed
for the experiments. The interested reader may find a more
detailed discussion on this classification method in [30].

Table I shows the results obtained from the considered
dataset by just using each single feature alone. Distance
features (D) alone provide an accuracy of about 68%. Note
that distance descriptors are very good in capturing the fact
that the various fingers are folded over the palm or raised,
an important element in the recognition of many gestures.
Elevation features (E) have lower performance as well
(46.0%); this is due both to the fact that in most gestures
in the dataset the fingers lay very close to the palm plane,
and to the varying accuracy in the plane fitting described in
Section III. Contour histogram similarity features (R) are
slightly less performing, since histogram correlations are
just a starting point for the distance features extraction and,
moreover, due to the zero-mean cross correlation algorithm
exploited, they are not always able to discriminate gestures
with the same number of fingers. Sum of squared differ-
ences (SSD) provide, instead, poor performances (37.8%).
Such features are anyway helpful when combined with
other features as showed in Table II. The curvature-
based classifier (C) allows to obtain the best performance
(89.5%), thanks also to the characteristic concavities and
convexities of each gesture profile. It is important to note
that curvatures do not rely on the computation of the hand
orientation or on the positions of the centroid and palm
plane. For this reason, curvature-based classifiers are more
performing in complex configurations where the estimation
of the hand orientation is not always highly accurate. Area
based features (A) allow to obtain, again, a relatively low
accuracy (45.4%), as they are affected by problems similar
to the elevations: the different quality in the plane fitting
and the fact that in most gestures many fingers lay on the
palm plane. Convex hull area (CA) and perimeter ratios
(CP) are the least performing features, probably because
their vectors are, single scalar numbers, and hence not
sufficient to separate a relatively high number of classes.
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Fig. 9: Gestures from the American Manual Alphabet contained in the experimental dataset.
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Fig. 10: Exemplification of leave-one person-out method.

Finally, the convex hull connected component area (CC)
features are ones of the most performing, although their
number is sensibly low respect to the curvatures (6 vs 240
features).

Type of features Accuracy
Distances (D) 68.4 %
Elevations (E) 46.0 %

Correlations (R) 60.4 %
Sum of squared distances (SSD) 37.8 %

Curvatures (C) 89.5 %
Areas (A) 45.4 %

Convex hull area ratio (CA) 29.6 %
Convex hull perimeter ratio (CP) 37.0 %

Convex hull conn. comp. area ratio (CC) 72.0 %

TABLE I: Performance of single features extracted from
the considered dataset.

A noteworthy characteristic of the described features is
their complementarity, that is, although many of them are
not so performing alone, when joined together they are
able to increase the overall classification accuracy as one
feature type is able to capture properties not detectable

by another feature type and viceversa. Table II shows
some examples of the performances that can be obtained
combining multiple features. In particular, the distance
only classifier is able to recognize some of the gestures
that curvatures only can not handle, and their joint usage
raises slightly the classification performance (91.4%). The
combination of correlation and sum of squared differences
features, instead, leads to a dramatic improvement in accu-
racy (78.3% vs 60.4% and 37.8% respectively). Even by
combining the convex hull area and perimeter ratios it is
possible a significant overall improvement (51.2% vs 29.6%
and 37.0% respectively).

The second part of Table II shows that by combining
3 feature types a modest overall accuracy improvement
can be obtained. This is due to the fact that the accuracy
values are already quite high, and not always the added
feature carry a sufficient amount of novel information to
solve the most critical classification ambiguities. The best
accuracy has been obtained by combining 4 feature types,
i.e., distances, elevation, area based and curvature features.
Finally, it is important to be aware that the addition of
an increasing number of feature types may not lead to an
overall improvement in accuracy and, sometimes, may also
lead to overfitting with detrimental effects on the classifier



performance.

Type of features Accuracy
D + C 91.4 %

R + SSD 78.3 %
CA + CP 51.2 %

D + E + C 93.6 %
D + A + C 92.0 %

DA + CP + CC 73.2 %
D + E + A + C 93.5 %

R + SSD + CA + CP + CC 86.8 %

TABLE II: Performance of the features combination.

VII. CONCLUSIONS

In this chapter effective solutions for the exploitation
of depth data in static hand gesture recognition have
been presented. The hand recognition and extraction step,
a very challenging task with color information, can be
effectively solved with simple approaches if depth data
is available. Furthermore depth can be combined with the
color data for an even more reliable recognition. Several
depth-based feature descriptors have been presented. Depth-
based descriptors are typically based on measures in the
3D space and are more robust to issues like the position
of the hand, its orientation, lighting and many others than
color-based descriptors. Furthermore they are able to better
capture the pose of the hand and of the various fingers,
making the gesture recognition task easier. A comparison
of the performances of the various features have been
presented in Section VI. Some features, most notably the
curvatures, but also distance and correlation features, have
better performances and allow alone to obtain a reliable
gesture recognition. However, notice how the different
features capture relevant complementary properties of the
hand gestures. For this reason the combination of multiple
features allows to obtain better performance than each
feature alone.
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